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Preface

Welcome to these notes on behavioural economics.

These are the notes for the UTS undergraduate subject 23005 Behavioural Eco-
nomics.

I take a traditional approach. I start with the basic economic and game theory
foundations. I then examine what happens when we introduce a richer view of
human behaviour. I look at how we make decisions under risk and uncertainty,
and over time, how we judge probability and how we interact with others.

The result is a new set of predictions as to how humans might behave and what
economic phenomena might emerge.

There are no mathematical prerequisites for this subject. Hence, the mathe-
matics is kept at a basic level.

I have created videos to accompany these notes. You can find links to them and
other teaching materials on my website at www.jasoncollins.blog/teaching/.

These notes cover the following areas:

• Economic foundations: The core economic concepts that we will use
and modify in exploring behavioural economics.

• Decision making under risk and uncertainty: The traditional eco-
nomic approach to decision making under risk and uncertainty, and some
empirical anomalies that arise when using this approach.

• Prospect theory: The pre-eminent alternative to expected utility theory,
prospect theory, with examples and possible applications.

• Inter-temporal choice: Decision making involving costs and benefits
occurring at different times. I look at two types of time preference: expo-
nential discounting and quasi-hyperbolic discounting.

• Beliefs: Some core concepts on beliefs and probability judgment and the
empirical evidence on how humans do not adhere to these foundational
principles.

• Game theory: The game theoretic concepts that we use in our analysis
of behavioural game theory and social preferences.
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• Behavioural game theory: How heterogeneous agents and bounded
rationality can change our analysis of economic games.

• Social preferences: How agents might incorporate the outcomes and
beliefs of others into their decisions.

What is behavioural economics?

Behavioural economics is a discipline that seeks to increase the explanatory
power of traditional economic approaches by incorporating more realistic psy-
chological foundations.

Behavioural economics retains the general framework and tools used by
economists, but deviates from some assumptions to generate new insights
and better predictions. These deviations are generally grounded in observed
behaviour rather than abstract principles.

What is not behavioural economics?

You have probably heard the term behavioural economics in the popular press
and books. Many of those references are not what I would consider to be be-
havioural economics. As a result, it is worth identifying what is not behavioural
economics.

The word economics is the key. Economics is the study of how economic agents
make decisions under conditions of scarcity and the study of the interactions
between those agents.

As I noted, behavioural economics involves the introduction of more realistic
psychological foundations to that economic approach.

Behavioural economics is not the general study of human behaviour. Be-
havioural science is a better term for that general study.

Similarly, psychology is the study of the human mind, decisions and behaviour.
Psychology is part of the behavioural sciences. Behavioural economics draws
on a small subset of psychology to develop a better understanding of human
behaviour.

Three thought experiments

Many early ideas in behavioural economics emerged from thought experiments
concerning human behaviour that was hard to explain with traditional economic
frameworks.
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Here are three thought experiments to illustrate the types of problems that
concern behavioural economists. In this course I will examine potential expla-
nations for each of these behaviours.

Thought experiment 1

This first thought experiment comes from Kahneman and Tversky (1984).

A. Imagine that you have decided to see a play and paid the admission price of
$100 per ticket. As you enter the theatre, you discover that you have lost the
ticket. The seat was not marked, and the ticket cannot be recovered.

Would you pay $100 for another ticket?

B. Imagine that you have decided to see a play where admission is $100 per
ticket. As you enter the theatre, you discover that you have lost a $100 bill.

Would you still pay $100 for a ticket for the play?

The two situations appear equivalent, yet people are more likely to pay $100 for
a ticket in scenario B.

Thought experiment 2

This second thought experiment comes from R. Thaler (1980).

Mr. R bought a case of good wine … for about $5 a bottle. A few years later
his wine merchant offered to buy the wine back for $100 a bottle. He refused,
although he has never paid more than $35 for a bottle of wine.

Why is there such a large difference between the price at which he is willing to
buy and the price at which he is willing to sell?

Thought experiment 3

This third thought experiment also comes from R. Thaler (1980).

A group of hungry economists is awaiting dinner when a large can of cashews is
opened and placed on the coffee table. After half the can is devoured in three
minutes, everyone agrees to put the rest of the cashews into the pantry.

Why did they agree to remove the cashews when they simply could have not
eaten them? Why did they deliberately reduce their choice set?
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Part I

Economic foundations
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Behavioural economics builds on the frameworks and tools used by economists.
In this part, I introduce some of the core economic concepts that we will build
on or explicitly deviate from in our exploration of behavioural economics.

I will first examine the preference relation used by economists.

Then I will discuss how economists define rationality, and the foundational
axioms of rationality, completeness and transitivity.

Finally, I will describe how the preference relation and axioms form the basis of
utility functions.
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Chapter 1

Preferences

Economists use the preference relation to capture the ordering that an agent
gives to options between which they might choose. There are three forms of the
preference relation.

The first is the strong (or strict) preference relation. We use the strong pref-
erence relation to indicate that an agent considers one option “better than”
another. We represent strong preference with the symbol ≻.

The second is the weak preference relation. We use the weak preference relation
to indicate that an agent considers one option “at least as good as” another.
We represent weak preference with the symbol ≽.

The third is indifference. Indifference occurs when an agent considers that each
option is “as good as” the other or that the agent is “indifferent between” the
options. We represent indifference with the symbol ∼.

Here are a couple of illustrations of these relations.

Suppose I strongly prefer bananas to apples. I would write:

• bananas ≻ apples

Bananas are better than apples.

Similarly, if I am indifferent between bananas and oranges, I would write:

• bananas ∼ oranges

Bananas are as good as oranges. Oranges are as good as bananas.

There is an important link between indifference and the weak preference relation.
I am indifferent between 𝑥 and 𝑦 (𝑥 ∼ 𝑦) if and only if I weakly prefer 𝑥 to 𝑦
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(𝑥 ≽ 𝑦) and I weakly prefer 𝑦 to 𝑥 (𝑦 ≽ 𝑥). The weak preference relation
includes the possibility of indifference.

In that case of the example of my indifference between oranges and bananas, I
could also say that I weakly prefer bananas to oranges and that I weakly prefer
oranges to bananas:

• bananas ≽ oranges and oranges ≽ bananas
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Chapter 2

Rationality

A standard economic assumption is that decision makers are rational.

However, rationality in economics has a different definition to the ‘lay’ definition
of rationality.

Rationality simply means that preferences respect some desirable principles.
These principles are assumptions, not rules of behaviour.

Economists tend to keep the number of assumptions as small as possible. They
choose the assumptions that they need for the particular analytical problem
they have at hand.

In its most stripped-back form, analysis of consumer choice rests on just two
assumptions. These are completeness and transitivity.

2.1 Completeness

Completeness means that an agent can always compare any two options. The
agent cannot fail to have a preference between two options (although that pref-
erence may be indifference).

For example, if an agent was presented with a choice between an apple and a
banana, or a choice between a Mercedes and a BMW, they will always strictly
prefer one of them or be indifferent between the two. They will never not know
what to choose or be unable to make a choice. They cannot be indecisive.

Formally, we can state the completeness axiom as follows:

For all 𝑥 and 𝑦, either 𝑥 ≽ 𝑦 or 𝑦 ≽ 𝑥 (or both).
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Completeness means people always prefer 𝑥 or 𝑦, or are indifferent between the
two.

While the completeness axiom appears sensible, it is possible to develop exam-
ples where it may not hold. Consider a choice between two possible holiday
destinations. Or two potential dates or spouses. If you are torn between the
options and unable to make up your mind, this would represent a breach of the
completeness axiom.

Incomplete preferences are different from indifference. If you are indifferent, you
would be able to decide by, say, flipping a coin. You will be equally satisfied
whatever the outcome. Incompleteness makes choice impossible.

2.2 Transitivity

Under transitivity, if a person prefers A to B and B to C, they will prefer A to
C.

Formally, we can state the transitivity axiom as follows:

For all 𝑥, 𝑦 and 𝑧, if 𝑥 ≽ 𝑦 and 𝑦 ≽ 𝑧, then 𝑥 ≽ 𝑧.

One classic argument for transitivity is the concept of a “money pump” (David-
son et al. (1955)).

Suppose you have a person who prefers A to B, B to C and C to A. That is,
they have intransitive preferences. They have $20 and an endowment of C.

They are offered B in exchange for their endowment of C for some small nominal
cost (say $1). If they make the trade they now have B and $19.
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They are then offered A in exchange for their endowment of B, again for a
nominal cost.

Finally, they are offered C in exchange for their endowment of A for a further
nominal cost. They now have an endowment of C and $17. This process can be
repeated until the agent has no money.
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2.3 Preference Orderings

If we assume preferences are transitive and complete, it is possible to construct
a preference ordering.

Completeness guarantees that there will be only one ordering.

Transitivity guarantees that there will be no cycles in strict preference. Weak
preferences can cycle, so that one can prefer a to b and b to c and c to a, but
this entails indifference.

That preference ordering, a simple rank of which options an agent prefers, is all
that is required for some analysis of consumer choice.

2.4 Defining rationality

This definition of rationality, accordance to the axioms of completeness and
transitivity, provides little constraint on preferences.

You could prefer less money to more. You could prefer sums of money divisible
by seven with no remainder. You could prefer more for yourself or more for
someone else.

These axioms do not lead to an assumption that people are selfish, unless you
define selfishness to be simply acting in accordance with their preferences.

These axioms place some constraints on behaviour, and empirical evidence sug-
gests those constraints are sometimes breached by decision makers. But they
are constraints that allow much behaviour to be described as rational.
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Chapter 3

Utility

Economists often use numbers to represent strength of preference. This is done
through utility functions.
A utility function associates a number with each member of the universe. For
example:

• Banana: 3
• Orange: 2
• Apple: 1

This does not mean that I rate bananas three times higher than apples. It
simply means that I prefer bananas to apples. This utility scale is ordinal, not
cardinal. The following is equivalent:

• Banana: 300
• Orange: 2
• Apple: 1

Formally, the utility function 𝑢(⋅):

• maps the set of alternatives into the set of real numbers
• assigns larger numbers to preferred alternatives.

For example, we might write:

𝑢(banana) = 3

𝑢(orange) = 2

𝑢(apple) = 1
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The rank of those numbers gives us the preference relation:

𝑥 ≽ 𝑦 ⟺ 𝑢(𝑥) ≥ 𝑢(𝑦)

𝑥 ≻ 𝑦 ⟺ 𝑢(𝑥) > 𝑢(𝑦)

𝑥 ∼ 𝑦 ⟺ 𝑢(𝑥) = 𝑢(𝑦)

Again, following from the above:

𝑢(banana) = 3 > 2 = 𝑢(orange) ⟺ banana ≻ orange

This calculation of utility is not how the mind actually works. But under the
axioms of completeness and transitivity, the consumer behaves as if they have
a utility function 𝑢(𝑥𝑖) over outcomes 𝑥𝑖.
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Chapter 4

Economic foundation
exercises

4.1 Buridan’s ass

The paradox of Buridan’s ass runs as follows: An ass that is equally hungry and
thirsty is placed halfway between a pile of hay and a bucket of water. The ass
cannot decide between the hay and water, so dies of dehydration and starvation.

What axioms of choice are relevant to this fable? Are any axioms violated?

Answer

The axiom of completeness is violated. Under this axiom an agent cannot
fail to have a preference between two options (although that preference
may be indifference).
Incompleteness is different from indifference. Is the ass was merely in-
different it would be happy taking either option and be equally satisfied.
Indifference does not make a choice impossible.

4.2 Picking a mobile plan

You are considering two mobile phone plans. Each has different monthly fees,
data caps, excess data charges, international inclusions and 5G coverage. You
realise it will take all day to work through the fine print to undserstand the
plans.

You decide that your options are:
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a) Pick a plan by flipping a coin.
b) Spend the day working through the plans and choose one.
c) Avoid the work by reading a book instead.
Does this decision accord with the axioms we have discussed?

Answer

All three choices could be considered to accord with the axioms we have
discussed. What we have effectively done in each case is created a richer
choice set. In no case are their preferences incomplete. You could think
of the choice set as {Plan A, Plan B, invest to understand plans, do
something else}.
You would only state that the preferences are incomplete if the agent
wasn’t able to express a preference between Plan A and Plan B. However,
if they were forced to choose and happy to flip a coin, that would suggest
indifference.

4.3 Rationality

Consider the following statements about rationality in economics. How do these
criticisms relate to the definition of rationality we have discussed?
a) From Robert Frank in the New York Times:

TRADITIONAL economic models assume that people are self-
interested in the narrow sense. If “homo economicus” - the
stereotypical rational actor in these models - finds a wallet on the
sidewalk, he keeps the cash inside. He doesn’t leave tips after
dining in restaurants that he will never visit again. And he would
never vote in a presidential election, much less make an anonymous
donation of money or time to a presidential campaign.

Answer

The traditional economic axioms assume self-interest in a narrow sense,
in that people make decisions in accordance with their preferences. How-
ever, completeness and transitivity say nothing about the content of those
preferences. A person might prefer to return the wallet or leave a large
tip for the good feeling they get. They might enjoy voting and care about
outcomes for others.
Even auxiliary axioms such as monotonicity or non-satiation leave these
possibilities open in that while the agent will always want more, they do
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not require that it is purely for their own benefit.

b) From Brian Easton in interest.co.nz:

For the last 150 years much economic analysis has been based on
homo economicus, an ‘economic’ man who is rational and narrowly
self-interested and who pursues his subjectively defined ends opti-
mally.

Answer

First, “man who is rational” accords with the technical definition in eco-
nomics but differs from how used in common speech (and likely that of
readers of the article).
If we read “narrowly self-interested” to mean that they make decisions in
accordance with their preferences, then we might agree with that state-
ment. However, we cannot place any further content into that idea of
self-interest.
Similarly, the statement “pursues his subjectively defined ends optimally”
accords with the idea that under the axioms of completeness and transi-
tivity, the consumer behaves as if they have a utility function 𝑈(𝑥𝑖) over
outcomes 𝑥𝑖. They are able to choose between any two options. They
also do not make errors (although randomness can be built into utility
functions). This definition of “optimally” is narrower than might be used
in common speech.
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Part II

Decision making under risk
and uncertainty
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In this part, I examine the basic economic approach to decision making under
risk and uncertainty.

I introduce the mathematical concepts on which our analysis is built, describe
the concept of expected value, define the axioms that underpin our discussion
of risk and uncertainty, and discuss expected utility theory. I then describe a
set of empirical anomalies in expected utility theory that provide grounds for
the behavioural economic approach.
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Chapter 5

Notation and mathematical
background

5.1 Notation

Before analysing decision-making under risk and uncertainty, I will introduce
some notation.

Suppose we have a lottery 𝐿 with 𝑛 possible outcomes 𝑥1, 𝑥2, ..., 𝑥𝑛 each with
probabilities 𝑝1, 𝑝2, ..., 𝑝𝑛. A shorthand way to write this is:

𝐿 = (𝑝1, 𝑥1; 𝑝2, 𝑥2; ...; 𝑝𝑛, 𝑥𝑛)

For example, suppose you are offered a gamble with a 50% probability of winning
$200 and a 50% probability of losing $100. We can write this as:

𝐿 = (0.5, −100; 0.5, 200)

The order of each outcome-probability pair does not matter. I could also write:

𝐿 = (0.5, 200; 0.5, −100)

You may also see gambles represented with the outcome and probability in a
different order, such as:

𝐿 = (𝑥1, 𝑝1; 𝑥2, 𝑝2; ...; 𝑥𝑛, 𝑝𝑛)

Or:
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𝐿 = (𝑥1, 𝑥2, ..., 𝑥𝑛; 𝑝1, 𝑝2, ..., 𝑝𝑛)

It is typically not difficult to determine which is which.

5.2 Mathematical background

We will use some basic mathematical concepts to analyse expected utility. I will
briefly review these concepts here.

5.2.1 Exponentiation

Exponentiation is a mathematical operation where a number is multiplied by
itself a certain number of times.

Exponentiation is written as 𝑓(𝑥) = 𝑥𝑎. That is, 𝑥 is multiplied by itself 𝑎
times. For example, 23 = 2 × 2 × 2 = 8.
The exponent 𝑎 can be any real number, including fractions and negative num-
bers. For example, a plot of the function 𝑓(𝑥) = 𝑥0.5 is shown in Figure 5.1.

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
x

f(
x)

=
x^

0.
5

Figure 5.1: Square root function
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5.2.2 The exponential function

The exponential function is written as 𝑓(𝑥) = 𝑒𝑥. The letter 𝑒 is a constant,
approximately equal to 2.71828. It is a special case of exponentiation where the
base is 𝑒, which is multiplied by itself 𝑥 times.

A plot of the exponential function is shown in Figure 5.2.

0

50

100

150

−5.0 −2.5 0.0 2.5 5.0
x

f(
x)

=
e^

x

Figure 5.2: The exponential function

5.2.3 The logarithmic function

The logarithmic function is written as 𝑓(𝑥) = ln(𝑥) or log𝑒(𝑥).
The logarithmic function is the inverse of the exponential function. That is, if
𝑓(𝑥) = 𝑒𝑥, then 𝑥 = ln(𝑓(𝑥)).
A plot of the logarithmic function is shown in Figure 5.3.

Note that the logarithmic function is only defined for positive values of 𝑥. The
logarithm of zero is undefined.

5.2.4 Differentiation

Differentiation is a mathematical operation that finds the rate of change (or
slope) of a function. It is written as 𝑑

𝑑𝑥𝑓(𝑥) or 𝑑𝑦
𝑑𝑥 or 𝑓 ′(𝑥).
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Figure 5.3: The logarithmic function

There are several simple rules to differentiate a function. The rules relevant to
these notes are as follows.

The derivative of a constant is zero.

𝑑
𝑑𝑥𝑐 = 0

The derivative of an exponentiation is:

𝑑
𝑑𝑥𝑥𝑎 = 𝑎𝑥𝑎−1

For example:

𝑑
𝑑𝑥𝑥2 = 2𝑥

You can see from this that for any value of 𝑥 greater than zero, the derivative
of 𝑥2 is greater than zero, signifying that the function 𝑓(𝑥) = 𝑥2 is increasing
and has positive slope. For any value of 𝑥 less than zero, the derivative is less
than zero, signifying that the function is decreasing and has negative slope.

As another example:
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𝑑
𝑑𝑥𝑥0.5 = 0.5𝑥−0.5

You can see from this that for any value of 𝑥 greater than zero, the derivative of
𝑥0.5 is greater than zero, signifying that the function 𝑓(𝑥) = 𝑥0.5 is increasing
and has positive slope. The function is not defined for 𝑥 < 0. This is shown in
Figure 5.1.

The derivative of the logarithmic function is:

𝑑
𝑑𝑥 ln(𝑥) = 1

𝑥

This derivative is positive for all values of 𝑥 for which ln(𝑥) is defined. Therefore
ln(𝑥) is increasing in 𝑥. You can see this in Figure 5.3.

The derivative of a fraction is:

𝑑
𝑑𝑥

1
𝑓(𝑥) = − 𝑓 ′(𝑥)

𝑓(𝑥)2

For example:

𝑑
𝑑𝑥

1
𝑥 = − 1

𝑥2

Where you have a function 1
𝑥𝑎 , it is often easier to write it as 𝑥−𝑎 and use the

rule for exponentiation. For example:

𝑑
𝑑𝑥

1
𝑥 = 𝑑

𝑑𝑥𝑥−1 = −1𝑥−2 = − 1
𝑥2

5.2.4.1 The second derivative

The second derivative of the function is a measure of the curvature of the func-
tion or the rate of change of the slope. We can calculate the second derivative
by taking the derivative of the first derivative.

We can use the second derivative to determine whether a function is concave or
convex. A function is concave if the second derivative is negative and convex if
the second derivative is positive.

The second derivative of a function is written as 𝑑2
𝑑𝑥2 𝑓(𝑥) or 𝑑2𝑦

𝑑𝑥2 or 𝑓″(𝑥).
For example, if 𝑓(𝑥) = 𝑥2, then:
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𝑑2

𝑑𝑥2 𝑥2 = 𝑑
𝑑𝑥2𝑥 = 2

The second derivative is positive (equal to 2) for all values of 𝑥. This implies
that 𝑓(𝑥) = 𝑥2 is increasing at an increasing rate. The function is convex.

The second derivative of 𝑥0.5 is:

𝑑2

𝑑𝑥2 𝑥0.5 = 𝑑
𝑑𝑥0.5𝑥−0.5 = −0.25𝑥−1.5

The second derivative is negative for all values of 𝑥 for which 𝑥0.5 is defined.
This implies that 𝑥0.5 is increasing at a decreasing rate. The function is concave.
You can see this in Figure 5.1.

The second derivative of the logarithmic function is:

𝑑2

𝑑𝑥2 ln(𝑥) = 𝑑
𝑑𝑥

1
𝑥 = − 1

𝑥2

This second derivative is negative for all values of 𝑥 for which ln(𝑥) is defined.
This implies that ln(𝑥) is increasing at a decreasing rate. The function is con-
cave. You can see this in Figure 5.3.

When working through these notes, you will not be asked to differentiate any
functions. However, understanding what differentiation is and what it shows
will help you understand the intuition behind the concepts I discuss. I will use
the functions 𝑓(𝑥) = ln(𝑥) and 𝑓(𝑥) = 𝑥0.5 in future sections.
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Chapter 6

Expected value

The expected value of a gamble is the amount you can expect to win on average,
in the long run, when you play a gamble.
Suppose I offer to flip a coin. I give you $1 if it is heads and you will give me
$1 if it is tails. What is the expected value of this gamble?
The expected value is $0. You lose $1 half the time and gain $1 half the time.
Formally, given a gamble, the expected value 𝐸[𝑋] of the random variable 𝑋 is
the probability-weighted sum of the potential outcomes. That is, we calculate
the expected value by multiplying each possible outcome by the probability with
which it occurs.
For the coin flip example, you multiply the 50% probability of heads by the $1
outcome and the 50% probability of tails by the -$1 outcome.

Probability Outcome
50% +$1
50% -$1

𝐸[𝑋] = 0.5 × 1 + 0.5 × (−1) = 0

We calculate the expected value of a gamble with 𝑛 possible outcomes using the
following equation:

𝐸[𝑋] = 𝑝1𝑥1 + 𝑝2𝑥2 + ... + 𝑝𝑛𝑥𝑛

=
𝑛

∑
𝑖=1

𝑝𝑖𝑥𝑖
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In this equation, 𝑝𝑖 is the probability of outcome 𝑥𝑖.

For those unfamiliar with the mathematical notation in the second line, the
large symbol sigma allows us to write what could be a long expression much
more succinctly. It means that we sum the term 𝑝𝑖𝑥𝑖 for each value of 𝑖 for 1
through to 𝑛. We sum 𝑝1𝑥1 with 𝑝2𝑥2 and so on until we reach 𝑝𝑛𝑥𝑛. Breaking
it down this way shows that the second line is equivalent to what I wrote in the
first line.

6.1 Expected value examples

I will now illustrate the concept of expected value with some simple examples.

6.1.1 Example 1

You are offered a bet with a 50% chance of winning $10 and a 50% chance of
losing $8.

The expected value of the gamble 𝑋 is:

𝐸[𝑋] =
𝑛

∑
𝑖=1

𝑝𝑖𝑥𝑖

= 0.5 × 10 + 0.5 × (−8)

= $1

Relating back to my earlier explanation of the summation symbol, here we have
𝑛 = 2 outcomes. We sum 𝑝1 = 0.5 multiplied by 𝑥1 = 10 with 𝑝2 = 0.5
multiplied by 𝑥2 = −8.
Suppose your chance of winning increases to 60%. The expected value of the
gamble is:

𝐸[𝑋] =
𝑛

∑
𝑖=1

𝑝𝑖𝑥𝑖

= 0.6 × 10 + 0.4 × (−8)

= $2.80
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6.1.2 Example 2

You are offered a bet with a 50% chance of winning 50% of your wealth and a
50% chance of losing 40% of your wealth.

The expected value of the bet is:

𝐸[𝑋] =
𝑛

∑
𝑖=1

𝑝𝑖𝑥𝑖

= 0.5 × 0.5𝑊 + 0.5 × (−0.4𝑊)

= 0.05𝑊

The expected value is 5% of your wealth.
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Chapter 7

Axioms for Expected
Utility Theory

In my discussion of rationality, I noted that in its most basic form analysis of
consumer choice rests on just two assumptions: completeness and transitivity.

For decision-making under risk, we require two additional axioms of desirable
behaviour to develop a predictive or descriptive model. These additional axioms
are continuity and the independence.

That gives us four axioms:

• Completeness
• Transitivity
• Continuity
• Independence

Under these axioms, a decision maker behaves as if choosing between risky
prospects by selecting the one with the highest expected utility.

The four axioms are often called the von Neumann–Morgenstern axioms for a
rational agent. This gives us another benchmark of “rationality”. An agent is
rational if they conform with these four axioms.

One important feature of preferences under these assumptions is that utility is
cardinal. The magnitude, not just rank, of the numbers matters.

If you look at other resources on the axioms underlying expected utility the-
ory, you may come across an axiom called the Archimedean property. The
Archimedean property is an alternative assumption to continuity. Only one of
continuity or the Archimedean property need be assumed. I will not cover the
Archimedean property in these notes.
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Beyond the axioms of completeness, transitivity, continuity and independence,
some additional axioms are often adopted for practical purposes. These include
using a reference point of zero wealth, non-satiation, monotonicity, convexity
and diminishing marginal utility.

In the following sections, I discuss each of the von Neumann-Morgenstern axioms
and the auxiliary axioms we use in examining decision making under risk.

7.1 Continuity

The idea behind continuity is that people have similar preferences for similar
bundles. If 𝑥 is preferred to 𝑦, bundles close to 𝑥 are preferred to bundles close
to 𝑦. There are no “jumps” in utility.

Continuity guarantees that every preference relation can be represented by a
continuous utility function (and vice versa).

Here are two formal definitions.

7.1.1 Definition 1

A preference relation is continuous if for any 𝑥 ≻ 𝑦 there exists a number 𝜖 > 0
such that every bundle 𝑎 that is less distant from 𝑥 than 𝜖 and every bundle 𝑏
that is less distant from 𝑦 than 𝜖 results in 𝑎 ≻ 𝑏.
To put this another way, a preference relation is continuous if for any 𝑥 ≻ 𝑦
there are some neighbourhoods 𝑁𝜖𝑥 and 𝑁𝜖𝑦 around 𝑥 and 𝑦 such that for every
𝑎 ∈ 𝑁𝜖𝑥 and 𝑏 ∈ 𝑁𝜖𝑦 we have 𝑎 ≻ 𝑏.
One way to picture this is to imagine a circle around bundles 𝑥 and 𝑦 of radius 𝜖.
These circles represent the neighbourhood. There will always exist some circle
- even if very small - within which every bundle 𝑎 within the neighbourhood of
𝑥 is preferred to bundle 𝑏 within the neighbourhood of 𝑦.
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The intuition behind this definition is that a very small change in your bundle
should not result in a sudden switch of your preferences. If you prefer 5 bananas
to 2 oranges, you will likely prefer 4.9 bananas to 2 oranges. (And if not, there
will be some amount of bananas between 4.9 and 5 that you prefer over 2
oranges.)

Here’s another intuitive example: if you prefer a Mercedes to a Toyota, there
will be some level of defect in the Mercedes that you would be willing to accept
while still preferring the Mercedes to the Toyota.

7.1.2 Definition 2

If 𝑥, 𝑦 and 𝑧 are lotteries with 𝑥 ≽ 𝑦 ≽ 𝑧, the continuity axiom requires that
there exists a probability 𝑝 such that 𝑦 is equally as good as a mix of 𝑥 and 𝑧.
That is, there exists 𝑝 such that:

𝑝𝑥 + (1 − 𝑝)𝑧 ∼ 𝑦

The below diagram illustrates continuity under this definition.

On the diagram are three bundles: 𝑥, 𝑦 and 𝑧, and each sits on a different
indifference curve. The indifference curve that 𝑥 is on is higher than that of 𝑦
which is higher than that of 𝑧. That is, 𝑥 ≽ 𝑦 ≽ 𝑧.
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Now consider a gamble that pays 𝑥 with probability 𝑝 and 𝑧 with probability
1−𝑝. Each value of 𝑝 would result in a gamble with utility falling between that
of 𝑥 and 𝑧. If we were to draw a line between 𝑥 and 𝑧, you could think of the
utility of the gamble for each value of 𝑝 as having the same utility as a bundle
on that line. Under the continuity axiom, there would be no holes in that line.
For some value of 𝑝, that gamble will be on the same indifference curve for 𝑦.
At that point, 𝑝𝑥 + (1 − 𝑝)𝑧 ∼ 𝑦.
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7.1.3 Example of discontinuous preferences

Lexicographic preferences occur where an agent prefers any amount of a good
𝑥 to any amount of another good 𝑦. If choosing between bundles of goods, the
agent will choose the bundle with the most 𝑥, regardless of the amount of 𝑦.
They will only consider the amount of 𝑦 if the amount of 𝑥 in two bundles is
identical.

Consider an agent with lexicographic preferences who is offered the following
combinations of 𝑥 and 𝑦.
A. (1, 1)

B. (1, 2)

C. (1.1, 1)
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Their preference ranking will be 𝐶 ≻ 𝐵 ≻ 𝐴. They prefer 𝐶 as it has more 𝑥
than the other two options. As 𝐴 and 𝐵 have the same amount of 𝑥, the agent
distinguishes them based on the quantity of 𝑦, preferring 𝐵.

This function is not continuous as there is a “jump” whenever there is an increase
in 𝑥, even if 𝑦 is large. Add an infinitesimal amount 𝜖 of 𝑥 to bundle 𝐴 and the
preference relation between bundle 𝐴 and bundle 𝐵 flips.

These three bundles 𝐴, 𝐵 and 𝐶 are represented graphically below.

First, let’s consider these preferences in terms of the first definition, being that
there are some neighbourhoods around 𝐴 and 𝐵 such that we will always prefer
another bundle of goods within the neighbourhood of B to any bundles within
the neighbourhood of 𝐴. Around 𝐴 I have drawn a circle of radius 𝜖, which we
can consider to be the neighbourhood. No matter how small I draw this circle
- that is, no matter how small 𝜖 - any bundle within the circle that lies to the
right of 𝐴 (that is, contains 𝑥 > 1) is preferred to bundle 𝐵. There is a jump
in preferences to the right of A.
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x

y

One interesting feature of lexicographic preferences is that you cannot draw
indifference curves on this figure. If a bundle differs from another, it must be
strictly preferred to the other as no amount of 𝑦 can make up for any amount
of 𝑥.
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We can also consider lexicographic preferences in terms of the second definition
of continuity. There is no 𝑝 for which:

𝑝𝐴 + (1 − 𝑝)𝐶 ∼ 𝐵

When 𝑝 = 1, 𝐵 ≻ 𝐴. For any 𝑝 < 1, 𝑝𝐴 + (1 − 𝑝)𝐶 ≻ 𝐵 as any non-zero share
of 𝐶 makes the combination of 𝐴 and 𝐶 preferred.

7.2 Independence

Consider the following scenarios.

In the first, a person has a choice between an orange and an apple. They state
that they strictly prefer the orange.

In the second, they are offered a choice between two gambles. The first gamble
is a 50% chance of an orange and a 50% chance of a pear. The second is a 50%
chance of an apple and a 50% chance of a pear. They state that they strictly
prefer the gamble with a 50% chance of an orange.

Compare the two scenarios. The choice between an apple or an orange from the
first scenario is mixed with a 50% probability of a pear in the second.

Under the axiom of independence, a person who prefers the orange in the first
will prefer the gamble with the orange in the second. Mixing those two lotteries
(a 100% chance of an orange or a 100% chance of an apple) with a third lottery
- in this case, a pear - will not change their order of preference.

More generally, under the axiom of independence, a person who mixes two
lotteries with a third lottery will maintain the same order of preference when
the lotteries are mixed as they had for the two original lotteries when presented
independently of the third.

A formal definition states that if:

• 𝑥 and 𝑦 are lotteries with 𝑥 ≽ 𝑦 and
• 𝑝 is the probability that a third option 𝑧 is present, then:

𝑝𝑧 + (1 − 𝑝)𝑥 ≽ 𝑝𝑧 + (1 − 𝑝)𝑦

The third choice, 𝑧 does not change the preference ordering. The order of
preference for 𝑥 over 𝑦 holds. It is independent of the presence of 𝑧.
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7.2.1 Example of the axiom of independence

Let us put our earlier example into this formal definition.

Suppose 𝑥 is a 100% probability of an orange and 𝑦 is a 100% probability of an
apple. I strictly prefer an orange to an apple.

Suppose there is now a third possibility 𝑧 of receiving a pear, which will be
present with 𝑝 = 50% probability.

Under the axiom of independence, if I prefer oranges to apples, I will prefer a
gamble with a 1 − 𝑝 = 50% chance of getting an orange and 𝑝 = 50% chance of
receiving a pear to a gamble with a 1−𝑝 = 50% chance of getting an apple and
a 𝑝 = 50% chance of receiving a pear.

That is:

orange ≻ apple ⟹ 50% chance of orange + 50% chance of pear ≻
50% chance of apple + 50%chance of pear

7.2.2 Distinguishing the independence of irrelevant alter-
natives from the independence axiom

The independence axiom is distinct from the principle of the independence of
irrelevant alternatives.

The independence of irrelevant alternatives states that if an agent prefers 𝑥 to
𝑦, the introduction of a third option 𝑧 should not change the preference order
between 𝑥 and 𝑦. For example, if you select fish rather than chicken from a
restaurant menu, being told by the waiter that there is a vegetarian option
should not lead you to change your selection to chicken.

The independence axiom is specific to lotteries. The logic behind this specificity
is that the outcomes of a lottery are never realised together. They can be treated
as independent. In my illustration involving apples, oranges and pears, there
is no outcome where the agent receives more than a single piece of fruit. They
will receive an apple, an orange or a pear. They will not receive a mix of fruit.

This is not the case for goods. Consider the following example with goods
drawn from Page (2022). You are again in a restaurant and have a choice
between chicken with mashed potato and beef with mashed potato. You choose
the chicken. You are then told that the restaurant has run out of mashed
potato, and the options are now chicken or beef with peas. Under the axiom of
independence, you would not change your choice to beef. However, beef may go
better with peas than chicken. There is an interaction between the two, with the
options realised together. Due to this interaction, the axiom of independence is
less compelling for the case of goods than it is for lotteries.
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7.3 Auxiliary axioms for expected utility theory

Beyond completeness, transitivity, continuity and independence, economists of-
ten adopt other axioms. These are not required for expected utility theory, but
make analysis more practicable.

These include:

• Reference point of zero wealth
• Non-satiation
• Monotonicity
• Convexity
• Diminishing marginal utility

I provide further detail on these.

7.3.1 Reference point of zero wealth

When people are considering whether to accept or gamble or compare options,
they do not decide from a blank slate. They come with an existing set of
resources (wealth), and that wealth may affect their decision. A gamble may be
more attractive if someone has more or less wealth.

This necessitates the setting of a “reference point” from which utility is calcu-
lated. In Expected Utility Theory, that reference point is typically considered
to be zero wealth.

The way this is implemented is we typically calculate utility over total wealth.
For example, if offered a gamble where they could win or lose $10, we do not
calculate the utility of each option as 𝑈($10) and 𝑈(−$10). Rather, the utility
of each option is calculated as 𝑈(𝑊 + $10) and 𝑈(𝑊 − $10).
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The practical impact of this implementation is that people’s choices may differ
depending on their wealth. The same gamble may be accepted or rejected at
different levels of wealth.

7.3.2 Non-satiation

The idea behind non-satiation is that no matter what you have, there is always
another (nearby) bundle that you would rather have. There is no “maximum”
level of utility that you can achieve. Whatever your utility now, you can always
increase it.

In this diagram I have plotted an indifference curve. Point 𝑥 is on the curve. For
non-satiation, there will always be a point, such as 𝑦, that is strictly preferred
to 𝑥.
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7.3.3 Monotonicity

Preferences are monotone if more of any good in the bundle makes the agent
strictly better off. Non-satiation is implied by monotonicity, but not the other
way around.

Monotonicity implies downward-sloping indifference curves. This is because any
increase of a good in your bundle would take you to a higher indifference curve.
A horizontal indifference curve is not feasible as moving along that indifference
curve implies more of the good, but that is not possible as monotonicity implies
you are better off and hence on a higher indifference curve.

This can be seen in the following diagram. Point x lies on the indifference curve.
Increasing the amount of either good will take you to a higher indifference curve.
That is true for all points on that indifference curve.

41



x

0

5

10

15

20

0 5 10 15 20

7.3.4 Convexity

Convexity means that people have a preference for variety or combination (in-
difference curves bulge toward the origin). Averages are better than extremes.

In many contexts this makes sense. For example, suppose you are indifferent
between two beers and two meat pies. Under this assumption, any mix of the
two, such as a beer and a pie will be at least as preferred as the two beers or
two pies.

Formally, a preference relation is convex if, for any 𝑥 ≽ 𝑦 and for every 𝜃 ∈ [0, 1]:

𝜃𝑥 + (1 − 𝜃)𝑦 ≽ 𝑦

This definition is illustrated in the following diagram. The curve represents
an indifference curve for different combinations of two goods. There are two
bundles, 𝑥 and 𝑦. In this case, 𝑥 ≽ 𝑦 (as 𝑥 ∼ 𝑦). Any weighted combination of
𝑥 and 𝑦, which would be on the line between the two, can be seen to be strictly
preferred to either 𝑥 or 𝑦 as it would be on a higher indifference curve (a curve
further from the origin).
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One point to note from this diagram is that if the indifference curve were a
straight line, any point on a line between 𝑥 and 𝑦 would also be on that line,
and weakly preferred to 𝑥 and 𝑦. This would still be a convex curve.

This contrasts with strict convexity. Strict convexity is where, for any 𝑥 ∼ 𝑦,
𝑥 ≠ 𝑦 and for every 𝜃 ∈ [0, 1]:

𝜃𝑥 + (1 − 𝜃)𝑦 ≽ 𝑦

𝜃𝑥 + (1 − 𝜃)𝑦 ≽ 𝑥

For two equivalent goods or bundles, a weighted average of the two bundles is
better than each of those bundles.

7.3.5 Diminishing marginal utility

Suppose you want some chocolate. You eat a piece. You then eat another. And
another. How much utility do you imagine getting from the first piece compared
to the 100th piece? The first piece will likely be much more satisfying than the
100th. This is the idea of diminishing marginal utility.
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Marginal utility is how much utility you get or lose from an incremental decrease
or increase in consumption. Under diminishing marginal utility, each successive
additional unit of consumption delivers a smaller (diminishing) amount of utility
than the last.

This concept is illustrated in the following diagram. The curve represents an
indifference curve for the good 𝑥. The curve is concave, which means that the
slope of the curve decreases in 𝑥 and the marginal utility of each additional unit
of good 𝑥 decreases as you consume more of it. One additional unit of good 𝑥
when the agent has 𝑎 units of the good leads to a much larger increase in utility
than one additional unit when the agent has 𝑏 units of the good.
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Diminishing marginal utility leads to risk-averse preferences. Someone is risk
averse if they strictly prefer the expected value of a gamble to the gamble itself.

Diminishing marginal utility is related to the axiom of convexity. Diminishing
marginal utility will lead to convex indifference curves. However, the reverse
relationship does not always hold.
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Chapter 8

Expected Utility Theory

Under expected utility theory, people do not seek to maximize expected value
but instead, maximize expected utility.

Under expected utility theory, people choose between risky prospects (prospect
being another word for lottery or gamble common in the literature) by com-
paring expected utility values. An agent would pick the option that maximises
their expected utility.

8.1 Calculating expected utility theory

Consider a prospect with final outcomes 𝑥1, ..., 𝑥𝑛, with each outcome occurring
with probability 𝑝1, ..., 𝑝𝑛. Each outcome would deliver utility 𝑈(𝑥𝑖).
Expected utility, 𝐸[𝑈(𝑋)], is calculated using the following formula:

𝐸[𝑈(𝑋)] = 𝑝1𝑈(𝑥1) + 𝑝2𝑈(𝑥2) + ... + 𝑝𝑛𝑈(𝑥𝑛)

=
𝑛

∑
𝑖=1

𝑝𝑖𝑈(𝑥𝑖)

You can think of this formula as comprising the following steps:

1. Define utility 𝑈(𝑥𝑖) over final outcomes 𝑥1, ..., 𝑥𝑛

2. Weight the utility of each outcome 𝑈(𝑥𝑖) by the probability 𝑝𝑖 of outcome
𝑥𝑖

3. Add the weighted utilities.
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There is an important note to make here regarding outcomes 𝑥1, ..., 𝑥𝑛. Typi-
cally, these outcomes are not just the payoffs from the gamble, but rather the
agent’s final position. If the agent has wealth of $100 and is offered a coin flip
to win or lose $10, the outcomes are typically taken to be $90 and $110. Their
decision depends on their current wealth. As a result, expected utility is often
represented as in this equation:

𝐸[𝑈(𝑊 + 𝑋)] = 𝑝1𝑈(𝑊 + 𝑥1) + 𝑝2𝑈(𝑊 + 𝑥2)

+ ... + 𝑝𝑛𝑈(𝑊 + 𝑥𝑛)

=
𝑛

∑
𝑖=1

𝑝𝑖𝑈(𝑊 + 𝑥𝑖)

8.2 Attitudes toward risk

Expected utility theory allows us to examine an agent’s attitude toward risk.

There are three possible attitudes toward risk: risk aversion, risk neutrality, and
risk seeking.

If a person prefers a sure amount to a gamble with the same expected value,
they are risk averse. That is, the utility of the expected value of 𝑋 is greater
than the expected utility of 𝑋.

𝑈(𝐸[𝑋]) > 𝐸[𝑈(𝑋)]

If a person prefers a gamble to a sure amount of the same expected value, they
are risk-seeking. That is, the expected utility of 𝑋 is greater than the utility of
the expected value of 𝑋.

𝑈(𝐸[𝑋]) < 𝐸[𝑈(𝑋)]

If a person is indifferent between a gamble and receiving the expected value of
the gamble with certainty, they are risk neutral. That is. the utility of the
expected value of 𝑋 is equal to the expected utility of 𝑋.

𝑈(𝐸[𝑋]) = 𝐸[𝑈(𝑋)]
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8.2.1 Certainty equivalent

One useful concept in the analysis of attitudes to risk is the certainty equivalent.
The certainty equivalent (CE) of a gamble X is the amount of money such that
you are indifferent between taking the gamble and taking the money. That
is, the utility of the certainty equivalent is equal to the expected utility of the
gamble.

𝑢(𝐶𝐸) = 𝐸[𝑈(𝑋)]

For a risk-averse person, the certainty equivalent of the bet is less than the
expected value of the gamble. The certainty equivalent is equal to the expected
value in the case of risk neutrality. A risk-seeking person would have a certainty
equivalent higher than the expected value of the gamble.

I will now look at each of the attitudes in turn.

8.2.2 Risk aversion

A risk-averse person prefers a sure amount to a gamble with the same expected
value. If I strongly prefer $10 for certain to a gamble with an expected value of
$10, I am risk averse. The certainty equivalent of the prospect for this person
would be less than $10.

The following chart illustrates. The x-axis is the amount of the good over which
the person receives utility. In the case of monetary gambles of the type we are
talking about, the x-axis is the amount of money. The y-axis is the utility the
person receives from that money.

The utility curve is a plot of the utility function for each amount of money.

The gamble shown in this chart has two possible outcomes, 𝑥1 and 𝑥2. An
outcome of 𝑥1 would result in utility 𝑈(𝑥1). An outcome of 𝑥2 would result in
utility 𝑈(𝑥2).
I have drawn a straight dash-dot-dot line between the points on the utility curve
for each of those outcomes. The expected utility from any gamble involving
those two outcomes would fall on that dashed line. Where on that line would
depend on the probability of each outcome and it would occur at a point in line
with the expected value of the gamble. You can see the expected value of the
gamble marked on the x-axis. If we extend up from that point we can read the
expected utility of the gamble, E[U(X)], from the y-axis.

One way to think about why projecting the expected value onto the expected
utility line identifies the expected utility of the bet is that each of the expected
value and expected utility are weighted by the same probabilities. They both
lie the same horizontal distance between the two potential outcomes.

47



In this particular example, the line between the utility of the two outcomes is
always below the utility curve. That is, for any probabilities involving those two
outcomes (except one of those outcomes with certainty), the expected utility of
the prospect is less than the utility of the expected value of the prospect. In
mathematical terms:

𝑈(𝐸[𝑥]) > 𝐸[𝑈(𝑥)]

Finally, the horizontal dashed line identifying E[U(X)] allows us to identify the
certainty equivalent of the gamble. At the point on the x-axis marked CE, the
utility from CE is equal to the expected utility of the prospect with expected
value E[X]. As the certainty equivalent is less than the expected value, this
provides another way of saying that the person is risk averse.

8.2.3 Risk neutrality

A risk-neutral person is an expected value maximiser. They are indifferent
between $10 for certain and a gamble with an expected value of $10. The
certainty equivalent of the prospect for this person would also be $10.

The following chart illustrates. Again we have two possible outcomes, 𝑥1 and
𝑥2 with resulting utility 𝑈(𝑥1) and 𝑈(𝑥2).
A line between the points on the utility curve for each of those outcomes lies
on the utility curve itself. For any probability, the utility of the expected value
and the expected utility are the same.
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8.2.4 Risk seeking

A risk-seeking person prefers a gamble to a sure sum equal to the expected value
of that gamble. The certainty equivalent is more than the expected value of the
gamble. The gamble has value in and of itself.

The following chart illustrates. Again I have drawn a dash-dot-dot line between
the points on the utility curve for each of those outcomes. That line is always
above the utility curve. That is, for any probabilities involving those two out-
comes (except one of those outcomes with certainty), the expected utility of the
prospect is more than the utility of the expected value of the prospect.
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Chapter 9

Subjective expected utility
theory

Subjective expected utility theory is used in situations of uncertainty, where the
probabilities are not known. People maximize expected utility using a subjective
estimate of probability.

The agent maximises subjective expected utility, 𝐸[𝑈(𝑥)], using a subjective
probability 𝜋(𝑥𝑖) for each outcome 𝑥𝑖.

While people may have different beliefs about the probabilities of different out-
comes, as the word “subjective” indicates, these are typically assumed to comply
with Bayesian probability theory. Decision makers are Bayesian, in that, given
the evidence, they have beliefs that are consistent with Bayes’ rule. I discuss
Bayes’ rule in more detail later.

The equation for subjective utility theory is as that for expected utility theory,
except that the probabilities are subjective.

𝐸[𝑈(𝑥)] = 𝜋(𝑥1)𝑈(𝑥1) + 𝜋(𝑥2)𝑈(𝑥2) + ... + 𝜋(𝑥𝑛)𝑈(𝑥𝑛)

=
𝑛

∑
𝑖=1

𝜋(𝑥𝑖)𝑈(𝑥𝑖)

You can think of this formula as comprising the following steps:

1. Define utility 𝑈(𝑥𝑖) over final outcomes 𝑥1, ..., 𝑥𝑛.

2. Define subjective probability 𝜋(𝑥𝑖) over final outcomes 𝑥1, ..., 𝑥𝑛.
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3. Weight the utility of each outcome 𝑈(𝑥𝑖) by the subjective probability
𝜋(𝑥𝑖).

4. Add the weighted utilities.
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Chapter 10

Expected utility examples

10.1 A 50:50 bet

Suppose your utility function is 𝑈(𝑥) = ln(𝑥).
You have a 50% chance of winning $10 and a 50% chance of losing $10. Assume
your starting wealth is $20.

What is the expected value of this game?

𝐸[𝑋] =
𝑛

∑
𝑖=1

𝑝𝑖𝑥𝑖

= 0.5 × 10 + 0.5 × (−10)

= 0

The expected value of the game is $0.

What is the expected utility of this game?

𝐸[𝑈(𝑊 + 𝑋)] =
𝑛

∑
𝑖=1

𝑝𝑖𝑈(𝑥𝑖 + 𝑊)

= 0.5𝑈(20 − 10) + 0.5𝑈(20 + 10)

= 0.5ln(10) + 0.5ln(30)

= 2.85
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What does an expected utility of 2.85 mean? To make it tangible, we can ask
what wealth would give that utility.

𝑈(𝑊) = ln(𝑊) = 2.85
𝑊 = 𝑒2.85 = $17.30

This gamble with an expected value of zero reduces utility by an amount equiv-
alent to $2.70.
We could also say that the certainty equivalent of this gamble is the final wealth
of $17.30, or a loss of $2.70.
Figure 10.1 illustrates the example.

W−10

U(W−10)

U(W)

W+10

U(W+10)

E[X]=W

E[U(X)]

W−2.70

x

U(x)

Figure 10.1: A 50:50 bet

On the x-axis, we have the outcomes and on the y-axis, we have the utility.
I have added points on the x-axis for the outcomes of the two gambles, being
𝑊 −10 and 𝑊 +10. They deliver utility 𝑈(𝑊 +10) and 𝑈(𝑊 −10) respectively.
The expected utility of the gamble is the probability-weighted average of these
two points. It sits on the straight dash-dot-dot line between those two outcomes.
You can see that the expected utility of the gamble is lower than the utility of
the expected value (being current wealth).
Also plotted is the certainty equivalent. We can identify it as the point on
the utility curve where the utility of that certainty equivalent is equal to the
expected utility.
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10.2 An 80:20 bet

Suppose your utility function is 𝑈(𝑥) = ln(𝑥).
You have an 80% chance of winning $10 and a 20% chance of losing $10. Assume
your starting wealth is $20.

What are the expected value and the expected utility of this game?

𝐸[𝑋] =
𝑛

∑
𝑖=1

𝑝𝑖𝑥𝑖

= 0.8 × 10 + 0.2 × (−10)

= $6

The expected value of the game is $6.

What is the expected utility of this game?

𝐸[𝑈(𝑊 + 𝑥)] =
𝑛

∑
𝑖=1

𝑝𝑖𝑈(𝑥𝑖 + 𝑊)

= 0.8𝑈(20 + 10) + 0.2𝑈(20 − 10)

= 0.8ln(30) + 0.2ln(10)

= 3.18

What does an expected utility of 3.18 mean? To make it tangible, we can ask
what wealth would give that utility.

𝑈(𝑊) = ln(𝑊) = 3.18
𝑊 = 𝑒3.18 = $24.08

This gamble with an expected value of $6 increases utility by an amount equiv-
alent to $4.08.

We could also say that the certainty equivalent of this gamble is the final wealth
of $24.08.

Figure 10.2 illustrates the example.

The expected utility of the gamble E[𝑈(𝑋)] is higher than the utility from
current wealth but lower than the utility of the expected value. That is, they
are risk averse but would still accept this highly favourable bet.
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W−10

U(W−10)

W

U(W)

W+10

U(W+10)

E[X]=W+6

E[U(X)]

W+4.08

x

U(x)

Figure 10.2: An 80:20 bet

Also plotted is the certainty equivalent. We can identify it as the point on
the utility curve where the utility of that certainty equivalent is equal to the
expected utility. In this case, it is at $4.08 above current wealth.

10.3 Betting a proportion of wealth

Suppose your utility function is 𝑈(𝑥) = ln(𝑥).
You have a 50% chance of increasing your wealth by 50% and a 50% chance of
decreasing your wealth by 40%.

What are the expected value and the expected utility of this game?

𝐸[𝑋] =
𝑛

∑
𝑖=1

𝑝𝑖𝑥𝑖

= 0.5 × 0.6𝑊 + 0.5 × 1.5𝑊

= 0.3𝑊 + 0.75𝑊

= 1.05𝑊
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The expected value of the gamble is 5% of your wealth. The gamble has a
positive expected value.

𝐸[𝑈(𝑋)] =
𝑛

∑
𝑖=1

𝑝𝑖𝑈(𝑋𝑖)

= 0.5𝑈(0.6𝑊) + 0.5𝑈(1.5𝑊)

= 0.5ln(0.6) + 0.5 × ln(𝑊) + 0.5ln(1.5) + 0.5 × ln(𝑊)

= −0.255 + 0.203 + ln(𝑊)

= −0.053 + ln(𝑊)

Here we have a gamble with a positive expected value, 5% of your wealth, but
lower expected utility. Someone with log utility would reject this bet.
Figure 10.3 illustrates the example.

0.6W

U(0.6W)

W

U(W)

1.5W

U(1.5W)

E[X]=1.05W

E[U(X)]

CE

x

U(x)

Figure 10.3: Betting a proportion of wealth

I have added points on the x-axis for the outcomes of the two gambles, a 40%
reduction in wealth and a 50% gain in wealth. The expected utility of the
gamble is the probability-weighted average of these two points. It sits on the
straight dash-dot-dot line between those two outcomes.
You can see that the expected utility of the gamble is lower than the utility of
current wealth. They would reject an offer of this bet.
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10.4 The St. Petersburg game

The St. Petersburg game was invented by the Swiss mathematician Nicolas
Bernoulli.

The game starts with a pot containing $2. A dealer then flips a coin. The pot
doubles every time a head appears. The game ends, and the player wins the
pot when a tail appears.

• A tail on the first flip leads to a payment of $2.
• A tail on the second flip leads to a payment of $4
• A tail on the third flip leads to a payment of $8

And so on.

Consider what you would be willing to pay to play this game. Would you pay
$5? $10? $25? $50? More?

The expected value of this game is equal to the sum of the following series.

𝐸[𝑋] = 1
2 × 2⏟

Tail first

+ (1
2 × 1

2) × 4
⏟⏟⏟⏟⏟

Tail second

+(1
2 × 1

2 × 1
2) × 8

⏟⏟⏟⏟⏟⏟⏟
Tail third

+ (1
2 × 1

2 × 1
2 × 1

2) × 16
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Tail fourth

+...

= 1 + 1 + 1 + 1 + ...

=
∞
∑
𝑘=1

1

= ∞

The first term in the series captures the 50% chance of a tail on the first flip,
paying $2. The second term represents the 50% chance of a head on the first
flip, followed by the 50% chance of the tail second flip, paying $4. The third
term represents the 50% chance of a head on the first flip, followed by the 50%
chance of a head on the second flip, followed by the 50% chance of a tail on the
third flip, paying $8. And so on.

Multiplying out each of those terms results in a series of 1s.

The ∑ operator means “sum for 𝑘 = 1 to 𝑘 = ∞”.
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Contrast this expected value of ∞ with the sum you would pay to play the
game. You were likely not willing to pay an infinite amount.

This “paradox” is often resolved by introducing an expected utility function.

The expected utility of this game is equal to:

𝐸[𝑈(𝑋)] = 1
2 × 𝑈(𝑊 + 2)⏟⏟⏟⏟⏟⏟⏟

Tail first

+ (1
2 × 1

2) × 𝑈(𝑊 + 4)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

Tail second

+ (1
2 × 1

2 × 1
2) × 𝑈(𝑊 + 8)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Tail third

+ (1
2 × 1

2 × 1
2 × 1

2) × 𝑈(𝑊 + 16)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Tail fourth

+...

= 1
2𝑈(𝑊 + 2) + 1

4𝑈(𝑊 + 4) + 1
8𝑈(𝑊 + 8) + 1

16𝑈(𝑊 + 16) + ...

=
𝑘=∞
∑
𝑘=1

1
2𝑘 𝑈(𝑊 + 2𝑘)

Similar to the calculation of the expected value, the first term in the series
captures the 50% chance of a tail on the first flip, paying $2. The second term
represents the 50% chance of a head on the first flip, followed by the 50% chance
of the tail on the second flip, paying $4. And so on. But here, we are using the
utility function 𝑈(𝑥).
In the second line, I multiplied the probabilities of each coin flip together.

In the third line, I expressed this infinite sum more compactly.

To take this equation further, we need to consider the particular utility function
of the decision maker.

What maximum sum would a risk-neutral player with 𝑈(𝑥) = 𝑥 be willing to
pay to play the game?

One strategy to determine this sum is to ask what sum would result in the
player being indifferent between paying and rejecting a chance to play. That is
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the maximum sum 𝑐 that they would be willing to pay. They will be indifferent
when 𝑈(𝑊) = 𝐸[𝑈(𝑋 − 𝑐)].
We can solve this equation as follows.

𝑈(𝑊) = 𝐸[𝑈(𝑋 − 𝑐)]

=
𝑘=∞
∑
𝑘=1

1
2𝑘 𝑈(𝑊 + $2𝑘 − 𝑐)

𝑊 =
𝑘=∞
∑
𝑘=1

1
2𝑘 (𝑊 + 2𝑘 − 𝑐) (substituting in the utility function)

= 𝑊 − 𝑐 +
𝑘=∞
∑
𝑘=1

1 (as
𝑘=∞
∑
𝑘=1

1
2𝑘 = 1)

𝑐 =
𝑘=∞
∑
𝑘=1

1

= ∞

In the second line, we use the sum we created earlier. In the third line, I
substitute the utility function 𝑈(𝑥) = 𝑥. We can then simplify as in the fourth
line, which allows us to see that, given the infinite expected value of the game,
the player would be willing to pay an infinite amount to play.
That is, a risk-neutral player would pay any amount $𝑐 to play.
We could also have inferred this from the game’s expected value being infinite.
What is the maximum sum a risk-averse player with 𝑈(𝑥) = ln(𝑥) would be
willing to pay to play the game? How does their wealth affect their willingness
to pay?
Again we will determine at what $𝑐 the player is indifferent between accepting
and rejecting a chance to play, which occurs when 𝑈(𝑊) = 𝐸[𝑈(𝑋 − 𝑐)].

𝑈(𝑊) = 𝐸[𝑈(𝑋 − 𝑐)]

𝑈(𝑊) =
𝑘=∞
∑
𝑘=1

1
2𝑘 𝑈(𝑊 + $2𝑘 − 𝑐)

ln(𝑊) =
𝑘=∞
∑
𝑘=1

1
2𝑘 ln(𝑊 + $2𝑘 − 𝑐)
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There is no closed-form solution to this equation to enable us to determine 𝑐.
We need to solve via numerical methods (such as testing and iterating to a
solution).

If we did solve this, we would find that someone who has wealth of $0.01 would
be willing to pay up to $2.01. They would need to borrow. Someone with
wealth $1000 would be willing to pay $10.95. A person with a wealth of $1
million would be willing to pay $20.87.

We cannot solve for a person with no wealth as ln (0) is undefined.

Why does willingness to pay increase with wealth?

With log utility, as wealth increases, the slope of the log function increasingly
approximates a linear function (the second derivative approaches zero). Hence,
the gambler displays less risk-averse (closer to risk-neutral) behaviour.

One way to gain an intuition for why this gamble now has a finite value is to
calculate the utility of a risk-averse player whose only asset is the opportunity
to play this game.

𝐸[𝑈(𝑋)] =
𝑘=∞
∑
𝑘=1

1
2𝑘 𝑈($2𝑘)

=
𝑘=∞
∑
𝑘=1

1
2𝑘 ln(2𝑘) (substituting in the utility function)

=
𝑘=∞
∑
𝑘=1

𝑘
2𝑘 ln(2) (using the rule ln(𝑥𝑎) = 𝑎 ln(𝑥))

= (1
2 + 2

4 + 3
8 + 4

16 + 5
32 + ...)ln(2)

= 2ln(2)

The change in the utility from each flip rapidly declines. Ultimately the series
of fractions sum to two.

We can then calculate what wealth is equivalent to this expected utility.

𝑈(𝑊) = ln(𝑊) = 2ln(2)𝑊 = 𝑒2ln2 = 4

The expected utility from the game is equal to the utility of $4.
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10.5 Risk neutrality versus risk aversion

Anika and Anthony are offered a choice between options A and B:

A: Lottery 𝐴 = (0.5, $100; 0.5, $20). This is a gamble with a 50% chance of
winning $100 and a 50% chance of winning $20.

B: $40 for certain.

(a) Anika is risk-neutral. Will Anika choose A or B?

A risk-neutral decision-maker maximises expected value.

The expected value of option A is:

E[𝐴] = 𝑝1𝑥1 + 𝑝2𝑥2

= 0.5 × $100 + 0.5 × $20

= $60

The expected value of option B is $40.

Anika will choose option A because $60 is greater than $40.

(b) Anthony is risk averse with wealth $100 and utility function 𝑈(𝑥) = ln(𝑥).
Will Anthony choose A or B?

Anthony will select the option that gives the highest expected utility.

The expected utility of option A is:

E[𝑈(𝐴)] = 𝑝1𝑢(𝑥1) + 𝑝2𝑢(𝑥2)

= 0.5 × ln(𝑊 + 100) + 0.5 × ln(𝑊 + 20)

= 0.5 × ln(200) + 0.5 × ln(120)

= 5.04

The expected utility of option B is:

E[𝑈(𝐵)] = 𝑢(𝑊 + 𝑥)

= ln(140)

= 4.94
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Anthony will choose option A because E[𝑈(𝐴)] = 5.04 > 4.94 = E[𝑈(𝐵)].
(c) Draw a graph showing the choices faced by Anthony, his utility curve and
the expected utility of each option. Indicate the certainty equivalent of option
A. Explain how the graph shows which option Anthony will choose.

Figure 10.4 shows the choices faced by Anthony, his utility curve and the ex-
pected utility of each option. The horizontal axis is the outcome and the vertical
axis is utility of each outcome. The utility curve is the function 𝑈(𝑥) = ln(𝑥).
The two possible outcomes of gamble A are W+20=120 and W+100=200, which
deliver 𝑈(𝑊 +20) and 𝑈(𝑊 +100) respectively. Each are labelled on the chart.

The expected utility of gamble A is the weighted average of these two utilities
and lies on the straight line between 𝑈(𝑊 + 20) and 𝑈(𝑊 + 100). As each
outcome has a 50% chance of occurring, the expected utility of gamble A is the
midpoint of this line (as is the expected value of the gamble). The vertical line
from 𝑊 + 𝐸[𝐴] = 160 identifies that point, with the expected utility 𝐸[𝑈(𝐴)]
marked on the vertical axis.

The certain outcome from option B, the receipt of $40 resulting in wealth of
$140 is also marked on the x-axis, leading to utility of 𝑈(𝑊 + 𝐵).
It can be seen that the expected utility of gamble A 𝐸[𝑈(𝐴)] is greater than the
utility of the certain outcome 𝑈(𝑊 +𝐵). Anthony will therefore choose gamble
A.

The certainty equivalent of option A is identified as the point where 𝑈(𝐶𝐸) =
𝐸[𝑈(𝐴)]. This is identified by drawing a horizontal line from the expected utility
of gamble A to the utility curve. The point where this line intersects the utility
curve is the certainty equivalent of gamble A, shown by projecting a vertical
line downward.

This diagram is not drawn to scale.

10.6 Lottery ticket

Buying a lottery ticket has a negative expected value. Andrew is an expected
utility maximiser. He purchases a lottery ticket.

(a) What risk preferences (attitude to risk) does Andrew have?

If an expected utility maximiser purchases a lottery ticket with negative ex-
pected value, he is risk seeking. He values the gamble over and above the
expected value of the gamble.

(b) Use a graph to demonstrate your answer to part (a).

Figure 10.5 shows Andrew’s utility curve. As he is risk seeking it is convex (at
least over the domain of the lottery).
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W+B=140
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W+E[A]=160

E[U(A)]

CE

x

U(x)

Figure 10.4: Anthony’s consideration of option A and B

Each of the outcomes of the lottery are labelled. Andrew finishes with his
wealth minus the cost of the lottery ticket (𝑊 − 𝑇 ) or his wealth minus the
cost of the lottery ticket plus his lottery winnings (𝑊 − 𝑇 + 𝐿). If he does
not purchase the ticket, his wealth remains at 𝑊 . The utility of each possible
outcome (𝑈(𝑊 − 𝑇), 𝑈(𝑊), 𝑈(𝑊 − 𝑇 + 𝐿)) is also indicated on the vertical
axis.

The expected value of the lottery after buying the ticket is labelled (𝐸[𝑋]). As
the lottery has a negative expected value, 𝐸[𝑋] is less than 𝑊 .

The expected utility of the lottery lies on the straight line between the utility
of the two possible lottery outcomes. The place on the line is determined by
the probability of winning and is in line with the expected value of the lottery.
We can identify the expected utility of the lottery by projecting a line up from
𝐸[𝑋] to the straight line.

Finally, the certainty equivalent of the lottery is also marked. As 𝑈(𝐶𝐸) =
𝐸[𝑈(𝑋)], we can identify the certainty equivalent by projecting a line up from
𝐸[𝑈(𝑋)] to the utility curve.

Due to the convex curve, we can see that 𝐸[𝑈(𝑋)] is greater than 𝑈(𝑊). An-
drew prefers the lottery to the certain outcome of 𝑊 . Alternatively, we can
see that the certainty equivalent of the lottery is higher than current wealth.
Andrew would require a payment of at least 𝐶𝐸 − 𝑊 to forgo his opportunity
to partake in the lottery.
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Figure 10.5: Andrew’s consideration of whether to purchase a lottery ticket
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Chapter 11

Anomalies in expected
utility theory

In this part, I show several anomalies in expected utility theory.

11.1 The Allais Paradox

The Allais paradox is one of the most famous anomalies in expected utility
theory.

The paradox was first identified by Maurice Allais (1953). It emerges from the
pattern of response to two pairs of bets. The following example comes from
Kahneman and Tversky (1979).

For choice 1, the player is asked to choose one of the following bets:

Under Bet A, the player wins:

• $2500 with probability 33%
• $2400 with probability 66%
• $0 with probability 1%

Under Bet B, the player wins:

• $2400 with probability 100%

Which do you prefer?

When Kahneman and Tversky (1979) ran this experiment, 82% of participants
chose option B.
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For choice 2, the player is again asked to choose one of two bets:

Under Bet C, the player wins:

• $2500 with probability 33%

• $0 with probability 67%

Under Bet D, the player wins:

• $2400 with probability 34%
• $0 with probability 66%

Which do you prefer?

When Kahneman and Tversky (1979) ran this experiment, 83% of participants
chose option C.

Let’s examine this pair of preferences, with over 80% of experimental partici-
pants selecting B in Choice 1 and C in Choice 2.

According to expected utility theory, if an agent selects B, the expected utility
of B must be greater than the expected utility of A. That is:

𝑈(2400) > 0.33𝑈(2500) + 0.66𝑈(2400) + 0.01𝑈(0)

We can simplify that to:

0.34𝑈(2400) > 0.33𝑈(2500) + 0.01𝑈(0)

We can do the same analysis with the second choice. According to expected
utility theory, if an agent selects C, the expected utility of C must be greater
than the expected utility of D. That is:

0.33𝑈(2500) + 0.67𝑈(0) > 0.34𝑈(2400) + 0.66𝑈(0)

We can simplify that to:

0.33𝑈(2500) + 0.01𝑈(0) > 0.34𝑈(2400)

This is a contradiction. The two inequalities point in opposite directions. Under
expected utility theory, if an agent chooses A it should choose C. And if the
agent chooses B, it should choose D.

Why does this occur? What axiom is being breached?
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To understand this, I will show you another representation of the choices in this
table. The left half of the table shows the bets for choice 1, and the right half
for choice 2. Within each choice, the bets are represented as a payoff-chance
pair. For example, I can read from the table that bet A involves a 66% chance
of $2400, a 1% chance of $0, and a 33% chance of $2500. Bet B involves a 100%
chance of $2400.

I can then break up these payoff-chance pairs to create an equivalent represen-
tation as in this second table. I have split the outcomes in bets B and C. For
example, I have written the 100% chance of $2400 in option B as a 66% chance
of $2400 and a 34% chance of $2400. I have written the 67% chance of $0 in
bet C as a 66% chance of $0 and a 1% chance of $0.

With this split, you can see that the bets in the bottom two rows of choice 1
and choice 2 are the same. Both choice 1 and choice 2 involve a choice between,
in one bet, a 1% chance of nothing and a 33% chance of $2,500 and in the other
bet, a 34% chance of $2,400.

That common bet in choice 1 and choice 2 is paired with a 66% chance of the
same payoff regardless of the preferred bet. For choice 1 that common payoff
across bet A and bet B is $2400. For choice 2, that common payoff across bet
C and bet D is $0.

This representation allows us to see that preferring bet B to bet A and bet C to
bet D violates the axiom of the independence of irrelevant alternatives. Under
that axiom, two gambles mixed with an irrelevant third gamble will maintain
the same order of preference as when the two are presented independently of
the third gamble. In this case, the two bets are contained in the last two rows.
The irrelevant alternative is the 66% chance of $2400 or $0. It is an irrelevant
alternative as the payoff is the same regardless of whether you choose A or B,
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or C and D.
I can express this in terms of the formal definition of the independence of irrel-
evant alternatives axiom. The formal definition states that if:

• 𝑥 and 𝑦 are lotteries with 𝑥 ≽ 𝑦 and

• 𝑝 is the probability that a third option 𝑧 is present, then:

𝑝𝑧 + (1 − 𝑝)𝑥 ≽ 𝑝𝑧 + (1 − 𝑝)𝑦

For each of the choices in our lottery:

• 𝑥 is a 1 in 34 chance of $0 and a 33 in 34 chance of $2500

• 𝑦 is a 100% chance of $2400

• 𝑧 is $2400 in choice 1 and $0 in choice 2.

If 𝑝 = 0, we simply have 𝑥 ≽ 𝑦. For any non-zero value of 𝑝, such as the 66% in
both choices, the preference between 𝑥 and 𝑦 should not change.
Here’s another intuitive way to think about this bet.
Suppose I am going to generate one number between 1 and 100 randomly.
If a number between 1 and 66 is generated, you win the prize in the first row.
If number 67 is generated, you win the amount in the second. If a number from
68 to 100 is generated, you win the sum in the third.
Suppose that you know that the number generated is between 1 and 66. Would
you prefer bet A or B in choice 1? As you would win $2400 with either choice,
you will be indifferent. You will similarly be indifferent between bet C and D
in choice 2, winning $0 no matter what.
Suppose instead that a number between 67 and 100 is generated, but you don’t
know which. If you prefer A to B, you should also prefer C to D. In each choice,
you effectively face the same bet. Let’s assume for the moment that you prefer
A and C.
Finally, suppose you don’t know what number will be generated. We have just
determined that if you know the ticket is between 1 and 66, you are indifferent
between the options, but if between 67 and 100 is drawn, you prefer A and C.
You do not prefer B or D when the ticket range is 1 to 66 or 67 to 100, so you
should not prefer B or D when the ticket number is unknown.
However, the responses to the bets generated by Kahneman and Tversky (1979)
and many other experimentalists suggest that when the number is unknown, the
size of the certain amount for numbers 1 through 66 does matter. This irrelevant
alternative is changing the preferences of the experimental participants.
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11.2 Absurd rates of risk aversion

An important anomaly in expected utility theory concerns the level of risk aver-
sion required to explain observed behaviour.

Consider the following one-off bet involving the flip of a coin:

Head: You win $550
Tail: You lose $500

Would you accept this bet?

Barberis et al. (2006) offered this bet to experimental participants, including
those with substantial wealth such as professional investors with wealth above
$10 million.

70% of the sample turned down the bet.

Under the axiom of diminishing marginal utility, we could conclude people are
risk averse to small bets.

But, for sufficiently high levels of wealth, the expected utility curve is approxi-
mately linear, and people tend to take favourable bets.

The minimum utility function curvature required to reconcile an investor with
$10 million declining a 50:50 bet as small as +$550 or -$500 would imply that
they reject immensely favourable bets, which is not realistic.

Rabin (2000) showed that rejection of bets over moderate stakes can require
absurd rates of risk aversion. For instance, if a person who acts consistent with
expected utility theory always turns down a 50:50 bet to win $110 or lose $100
whatever their initial level of wealth, they will also turn down a 50:50 bet to
win $1 billion, lose $1,000.

At face value, that is ridiculous, and that is the crux of Rabin’s argument.
Rejection of the low-value bet to win $110 and lose $100 would lead to absurd
responses to higher-value bets. This leads Rabin to argue that risk aversion
or the diminishing value of money has nothing to do with the rejection of the
low-value bets.

The intuition behind Rabin’s argument is as follows.

Suppose we have someone who rejects a 50:50 bet to gain $110, lose $100. They
are an expected utility maximiser with a weakly concave utility curve: that is,
they are risk neutral or risk averse at all levels of wealth.

We can plot this on a chart. The horizontal axis is wealth and the vertical axis
is utility. The current wealth and utility of that wealth is marked.
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We can then mark the two possible outcomes of the bet, the gain of $110 and
the loss of $100. This graph is not to scale: I am exaggerating the size of the
gain to make the point visually stark, but the argument holds regardless. The
utility of each outcome will be a point on these vertical lines.

The expected value of the bet is W+5. That is also marked.

As the person rejected the bet, the expected utility of the bet must be less
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than or equal to the utility of current wealth. The point on the vertical line at
W+5 where we mark expected utility must align with or below the point on the
vertical line at W where we mark current utility.

The expected utility of the bet is the probability-weighted utility of each of the
two possible outcomes. The angle of this new line doesn’t matter, simply that
it is of positive slope.

From this, we can infer the relative utility of winning and losing the bet.
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As the person is risk averse at all levels of wealth, we can draw the following
lines as the least risk averse they could be while still rejecting the bet. We now
have part of the utility curve.

The slope of these two lines allows us to infer that they weight the average of
each dollar between their current wealth (W) and their wealth if they win the
bet (W+110) only 100/110ths (or 10/11ths) as much as they weight the average
dollar of the last $100 of their current wealth (between W-100 and W). We can
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also say that they, therefore, weight their W+110th dollar at most 10/11ths as
much as their W-100th dollar.
We can now do the same at W+210. We have assumed that they will reject
the bet at all levels of wealth, so they will also reject at this wealth. We can
therefore infer another piece of the utility curve (or, more specifically, a curve
for the least risk averse they could be).

Iterating the previous calculations, we can say that they will weight their
W+320nd dollar only 10/11 as much as their W+110th dollar. This means
they value their W+320th dollar only (10/11)2 as much as their W-100th dol-
lar.
As we infer additional pieces, we can see that this person rapidly declines in the
rate at which they place utility on further wealth.

We can also extended in the other direction, with losses below their current
wealth.
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Keep iterating in this way and you end up with some ridiculous results. You
value the 2100th dollar above your current wealth only 40% as much as your
last current dollar of your wealth - (10/11)10 - reducing by a constant factor
of 10/11 every $210. Or you value the 9000th dollar above your current wealth
at only 2% of your last current dollar [(10/11)40]. This is an absurd rate of
discounting.

Taking this iteration to the extreme, it doesn’t take long for additional money
to have effectively zero value. Hence the result, reject the 50:50 win $110, lose
$100 bet, and you’ll reject the win any amount, lose $1,000 bet.
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11.3 Framing

Under expected utility theory, a person’s choices should not be affected by how
the options are described or by how their preferences are elicited.

Kahneman and Tversky (1984) reported the following experiment.

A group of experimental participants were shown the following:
Imagine that the U.S. is preparing for the outbreak of an unusual
Asian disease, which is expected to kill 600 people. Two alternative
programs to combat the disease have been proposed. Assume that
the exact scientific estimates of the consequences of the programs
are as follows:
If Program A is adopted, 200 people will be saved.
If Program B is adopted, there is a one-third probability that 600
people will be saved and a two-thirds probability that no people will
be saved.
Which of the two programs would you favour?

72% of participants chose option A.

Another group of experimental participants were shown the following:

76



Imagine that the U.S. is preparing for the outbreak of an unusual
Asian disease, which is expected to kill 600 people. Two alternative
programs to combat the disease have been proposed. Assume that
the exact scientific estimates of the consequences of the programs
are as follows:
If Program C is adopted, 400 people will die.
If Program D is adopted, there is a one-third probability that nobody
will die and a two-thirds probability that 600 people will die.
Which of the two programs would you favour?

22% of participants chose option C.

72% of participants chose A and 22% of participants chose option C. Yet these
two options are equivalent. The only difference is the framing of the options,
which under expected utility theory should not matter.

11.4 Reference points

An auxiliary axiom of expected utility theory is that people use a reference point
of zero wealth. They consider the utility of the absolute outcomes.

However, consider the following two scenarios:

• You have not checked your share portfolio in a while. You expect that
the portfolio is worth around $40,000. Today when you check, it is worth
$30,000. Do you feel rich or poor?

• You have not checked your share portfolio in a while. You expect that
the portfolio is worth around $20,000. Today when you check, it is worth
$30,000. Do you feel rich or poor?

Under expected utility theory, those two scenarios should feel the same as you
have 𝑈($30, 000) in both cases.

However, in the first case, you feel poor and in the second case you feel rich. This
is because you are comparing the outcome to your reference point of $40,000 in
the first case and $20,000 in the second case. You are not assessing the absolute
outcome but appear to be using a reference point.

77



Chapter 12

Risk and uncertainty
exercises

12.1 Expected value of roulette

You are playing roulette at the casino. There are 37 numbered pockets around
the edge of the wheel (0 through 36). If you make a straight up bet on one of
the 37 single numbers, you are paid $35 for every dollar you bet (in addition to
receiving back your bet). What is the expected value of a $20 bet.

Answer

The expected value of the Roulette bet is:

𝐸[𝑋] =
𝑛

∑
𝑖=1

𝑝𝑖𝑥𝑖

= 36
37 × (−$20) + 1

37 × (35 × $20)

= $ − 0.54

12.2 Expected value of insurance

An agent is considering insurance against bushfire for its $1,000,000 house. The
house has a 1 in 1000 (𝑝 = 0.001) chance of burning down. An insurer is willing
to offer full coverage for premium $1100.
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a) What is the expected value of purchasing insurance?

Answer

If you purchase insurance, you pay the premium and do not suffer any
loss regardless of whether there is a bushfire or not.

𝐸[purchase] = −premium = −$1, 100
The expected value of purchasing insurance is the guaranteed loss of the
premium.
You could also think of the expected value of purchasing insurance as
involving both the loss of the house and the insurance payout in case of
fire. In that case, you would write:

𝐸[purchase] = 𝑝 × (−𝑣𝑎𝑙𝑢𝑒house + 𝑝𝑎𝑦𝑜𝑢𝑡 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚)

+ (1 − 𝑝) × (−𝑝𝑟𝑒𝑚𝑖𝑢𝑚)

= 0.001 × (−1000000 + 1000000 − 1100)

+ 0.999 × (−1100)

= −$1, 100

This gives the same answer as the first method.

b) What is the expected value of not purchasing insurance?

Answer

𝐸[don’t] = 𝑝 × −𝑣𝑎𝑙𝑢𝑒house

= −0.001 × 1000000
= −$1000

12.3 A bet or a certain payment?

Anika is an expected utility maximiser with the following utility function:

𝑈(𝑥) = √𝑥

Anika is offered the following choice:
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A) A 50% chance of winning $10 and a 50% chance of winning nothing
B) $4 for certain

Anika has zero wealth besides this offer.

a) What is the expected value of option A)?

Answer

The expected value of option A) is:

𝐸[𝐴] =
𝑛

∑
𝑖=1

𝑝𝑖𝑥𝑖

= 0.5 ∗ $10 + 0.5 ∗ 0

= $5

b) Will Anika choose A or B? Why?

Answer

We need to determine the expected utility of each option. Anika will
selection the option with the highest expected utility.
The expected utility of option A) is:

𝐸𝑈(𝐴) = 𝑝1𝑈(𝑥1) + 𝑝2𝑈(𝑥2)
= 0.5 ∗

√
10 + 0.5 ∗

√
0

= 1.58

The expected utility of option B) is:

𝐸𝑈(𝐵) = 𝑈(4)
=

√
4

= 2

Anika will choose option B) as it gives her higher expected utility. Anika
is risk averse.

c) What is the certainty equivalent of option A?
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Answer

To calculate the certainty equivalent of option A, we calculate what pay-
ment with certainty would deliver equivalent expected utility. That is:

𝐸𝑈(𝐶𝐸) = 1.58
√

𝐶𝐸 = 1.58
𝐶𝐸 = 1.582

= 2.5

The certainty equivalent of option A is $2.50. That is, Anika would be
indifferent between option A and a payment of $2.50 for certain.

d) Draw a graph showing Anika’s utility curve, the expected value of option A,
the expected utility of options A) and B) and the certainty equivalent of option
A).

Answer

4

U(4)

10

U(10)

E[A]=5

E[U(A)]

CE
x

U(x)

Figure 12.1: A bet or a certain payment?

81



12.4 A 50:50 gamble

Consider the following gamble:

(0.5; $550; 0.5, -$500)

This gamble provides a 50% chance of winning $550 and a 50% chance of losing
$500.

a) Would a risk neutral agent (who maximises expected value) be willing to pay
$20 to play this gamble? What is the most they would be willing to pay to
play?

Answer

The expected value of the gamble is:

𝐸[𝑋] =
𝑛

∑
𝑖=1

𝑝𝑖𝑥𝑖

= 0.5(550) + 0.5(−500)

= 25

This is greater than $20, so a risk neutral agent will be willing to pay $20
to participate in the gamble. The most they would be willing to pay is
$25.
We could also have solved this by determining the expected value if they
had paid $20:

𝐸[𝑋] − 𝑐 =
𝑛

∑
𝑖=1

𝑝𝑖𝑥𝑖 − 𝑐

= 0.5(550) + 0.5(−500) − 20

= 5

As the expected value is positive, the agent would be willing to pay $20.

b) Would a risk averse expected utility maximiser with wealth $1000 and utility
function 𝑈(𝑥) = 𝑥1/2 be willing to pay $20 to play this gamble? What is the
most they would be willing to pay to play?
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Answer

The expected utility of the gamble for the risk averse agent if they paid
$20 to play is:

𝐸𝑈(𝑥) = 𝑝1(𝑊 + 𝑥1 − 𝑐) + 𝑝2(𝑊 + 𝑥2 − 𝑐)

= 0.5(1000 + 550 − 20)1/2 + 0.5(1000 − 500 − 20)1/2

= 30.51

The expected utility of not playing the gamble is:

𝐸𝑈(𝑥) = (1000)1/2

= 31.62

They would not pay $20 as they would have higher utility if they turned
down the gamble.
In fact, they would not pay any positive sum to participate in the gamble.
If they were offered the gamble for free, their expected utility would be:

𝐸𝑈(𝑥) = 0.5(1000 + 550)1/2 + 0.5(1000 − 500)1/2

= 30.86

This is less than if they simply turned down the gamble. They would be
willing to pay to avoid the gamble. How much?
We can determine this by asking what wealth a utility of 30.86 is:

𝑊 1/2 = 30.86

𝑊 = 30.512

= $952.67

The certainty equivalent of the gamble is $952.67. The agent would be
willing to pay up to $47.33 to avoid the gamble.

c) Would the expected utility maximiser with utility function 𝑈(𝑥) = 𝑥1/2

change their decision if they had $1 million in wealth? Explain.
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Answer

If they now have $1 million in wealth, we simply repeat the calculations
above with the new wealth.

𝐸𝑈(𝑥) = 0.5(1000000 + 550 − 20)1/2 + 0.5(1000000 − 500 − 20)1/2

= 1000.00247

The expected utility of not playing the gamble is:

𝐸𝑈(𝑥) = (1000000)1/2

= 1000

They would be willing to pay $20 as they would have higher utility if they
accepted the gamble.
What is the most they would be willing to pay? If they were offered the
gamble for free, their expected utility would be:

𝐸𝑈(𝑥) = 0.5(1000000 + 550)1/2 + 0.5(1000000 − 500)1/2

= 1000.0125

How much would they be willing to pay for this opportunity? We can
determine this by asking what wealth a utility of 1000.0125 is:

𝑊 = (1000.0124655)2

= $1000024.93

The agent would be willing to pay up to $24.93 for the gamble. This is
close to the expected value of $25.
Intuitively, as the agent’s wealth increases their utility function becomes
increasingly linear (second derivative approaches zero) and they become
closer to risk neutral.

12.5 A 60:40 gamble

Penny is an expected utility maximiser with utility function 𝑢(𝑥) = 𝑙𝑛(𝑥) and
wealth of $300.

84



Penny is offered the following bet A:

• a 60% probability to win $150
• a 40% probability to lose $100.

a) Does Penny accept bet A?

Answer

Penny compares the utility of taking versus not taking the bet:

𝑈(A) = 𝑝1𝑢(𝑥1) + 𝑝2𝑢(𝑥2)
= 0.6𝑙𝑛(𝑊 + 150) + 0.4𝑙𝑛(𝑊 − 100)
= 0.6𝑙𝑛(450) + 0.4𝑙𝑛(200)
= 5.785

𝑈(𝑊) = 𝑙𝑛(𝑊)
= 𝑙𝑛(300)
= 5.704

𝑈(𝐴) > 𝑈(𝑊), so Penny accepts the bet.

b) Following some bad economic news, Penny wealth declines to $150.

Penny is offered bet A again. Does Penny accept the bet?

Answer

Penny compares the utility of taking versus not taking the bet:

𝑈(A) = 𝑝1𝑢(𝑥1) + 𝑝2𝑢(𝑥2)
= 0.6𝑙𝑛(𝑊 + 150) + 0.4𝑙𝑛(𝑊 − 100)
= 0.6𝑙𝑛(300) + 0.4𝑙𝑛(50)
= 4.987

𝑈(𝑊) = 𝑙𝑛(𝑊)
= 𝑙𝑛(150)
= 5.011

𝑈(𝐴) < 𝑈(𝑊), so Penny rejects the bet.
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12.6 Another 60:40 gamble

Gamble A is as follows:

($100, 0.6; -$100, 0.4)

This is a gamble with a 60% chance of winning $100 and a 40% chance of losing
$100.

a) Would a risk neutral decision-maker (who maximises expected value) be
willing to pay $10 to play gamble A? What is the most they would be willing
to pay to play?

Answer

A risk neutral decision maker will accept any offer with positive expected
value. The expected value of the bet is:

𝐸[𝐴] = 𝑝1𝑥1 + 𝑝2𝑥2
= 0.6 ∗ 100 + 0.4 ∗ (−100)
= $20

The risk neutral decision maker would pay $10 as this is less than the
expected value of the bet. They would be willing to pay up to the expected
value of the bet: $20. At that point they would be indifferent between
paying for the bet and refusing the bet.

b) Would an expected utility maximiser with wealth $200 and utility function
𝑈(𝑥) = 𝑙𝑛(𝑥) be willing to pay $10 to play gamble A? What is the most they
would be willing to pay to play?

Answer

The expected utility maximiser will play if their utility from playing and
paying is greater than their utility of refusing.
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𝑈(𝑊) = 𝑙𝑛(𝑊)
= 𝑙𝑛($200)
= 5.2983174

𝐸[𝑈(𝐴 − 𝑐)] = 𝑝1𝑈(𝑥1) + 𝑝2𝑈(𝑥2)
= 0.6𝑈(𝑊 + 100 − 10) + 0.4𝑈(𝑊 − 100 − 10)
= 0.6𝑙𝑛(200 + 100 − 10) + 0.4𝑙𝑛(200 − 100 − 10)
= 5.2018524

𝑈(𝑊) > 𝑈(𝐴 − 𝑐) so the decision maker will not be willing to pay $10.
To determine the most they would be willing to pay, we will first check
whether they will pay any positive sum. We will do that by examining
the expected utility of the gamble with no payment.

𝐸[𝑈(𝐴)] = 𝑝1𝑈(𝑥1) + 𝑝2𝑈(𝑥2)
= 0.6𝑈(𝑊 + 100) + 0.4𝑈(𝑊 − 100)
= 0.6𝑙𝑛(200 + 100) + 0.4𝑙𝑛(200 − 100)
= 5.2643376

𝑈(𝑊) > 𝑈() so the decision maker will not be willing to pay any amount.
In fact, they would pay to avoid the bet.
To calculate how much, we determine what the certainty equivalent of the
bet is:

𝑈(𝐶𝐸) = 𝐸[𝑈(𝐴)]
𝑙𝑛(𝐶𝐸) = 5.2643376

𝐶𝐸 = 𝑒5.2643376

= $

Having wealth of $200 and the bet is the equivalent of having wealth of
$193.32. They would be willing to pay up to $6.68 to avoid the bet.

c) Would the expected utility maximiser with utility function change their de-
cision if they had $1000 in wealth? Explain.
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Answer

The expected utility maximiser will play if their utility from playing and
paying is greater than their utility of refusing.

𝑈(𝑊) = 𝑙𝑛(𝑊)
= 𝑙𝑛($1000)
= 6.9077553

𝐸[𝑈(𝐴 − 𝑐)] = 𝑝1𝑈(𝑥1) + 𝑝2𝑈(𝑥2)
= 0.6𝑈(𝑊 + 100 − 10) + 0.4𝑈(𝑊 − 100 − 10)
= 0.6𝑙𝑛(1000 + 100 − 10) + 0.4𝑙𝑛(1000 − 100 − 10)
= 6.9128484

𝑈(𝑊) < 𝑈(𝐴 − 𝑐) so the decision maker is now willing to pay $10.
As the agent’s wealth increases their utility function becomes increasingly
linear (second derivative approaches zero) and they become closer to risk
neutral. As a result, the positive expected value bet becomes increasingly
attractive.

d) At what wealth is the expected utility maximiser with utility function 𝑈(𝑥) =
𝑙𝑛(𝑥) indifferent between accepting gamble A or not?

Answer

The expected utility maximiser will be indifferent when:

𝑈(𝑊) = 𝐸[𝑈(𝐴)]
𝑈(𝑊) = 0.6𝑈(𝑊 + 100) + 0.4𝑈(𝑊 − 100)
𝑙𝑛(𝑊) = 0.6𝑙𝑛(𝑊 + 100) + 0.4𝑙𝑛(𝑊 − 100)

There isn’t a simple closed form solution to this equation, but we know
from questions b) and c) that 𝑊 is somewhere between $200 and $1000.
If we wanted to calculate exact solution, you could use tool such as Math-
ematica or Matlab to solve, write a short code to solve in R or even iterate
toward a solution using Excel.
The expected utility maximiser is indifferent when 𝑊 =$256.81.
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12.7 Purchasing insurance

An agent is considering insurance against bushfire for its $1,000,000 house. The
house has a 1 in 1000 chance of burning down. An insurer is willing to offer full
coverage for $1100.
a) Would a risk neutral agent purchase the insurance?

Answer

We have already calculated that purchasing insurance in this case has a
lower expected value than not purchasing the insurance. A risk neutral
agent would not purchase the insurance.

b) Suppose an agent has a logarithmic utility function (𝑈(𝑥) = ln(𝑥)) and they
have $10,000 in cash in addition to their house, giving them wealth (𝑊 ) of
$1,010,000. Would this agent purchase the insurance? Are they risk seeking,
risk neutral or risk averse?

Answer

𝐸[𝑈(purchase)] = ln(𝑊 − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚)
= ln(1, 008, 900)
= 13.8244

𝐸[𝑈(don’t)] = 0.999 ∗ ln(𝑊) + 0.001 ∗ ln(𝑊 − 𝑣𝑎𝑙𝑢𝑒house)
= 0.999 ∗ ln(1, 010, 000) + 0.001 ∗ ln(10, 000)
= 13.8208

The expected utility of purchasing insurance is greater than the expected
utility from not purchasing insurance. This agent will purchase insurance.
They are risk averse.
The following diagram illustrates. The agent’s utility function is plotted,
with the outcome on the horizontal axis and the utility of each outcome
on the vertical axis. Each outcome and the utility of that outcome is
marked - wealth after losing the house when uninsured (𝑊 − 𝐻), wealth
after paying the insurance premium (𝑊 −𝑅), and wealth if uninsured but
the house does not burn down (𝑊).
The expected utility of not purchasing insurance is on the dash-dot line
between 𝑈(𝑊 −𝐻) and 𝑈(𝑊). The precise point is 𝑝 along this line from
𝑈(𝑊) (or 1 − 𝑝 along the line from 𝑈(𝑊 − 𝐻)). This point aligns with
the expected value of leaving the house uninsured 𝐸[¬𝐼].
The utility of purchasing insurance (𝑈(𝑊 − 𝑅)) is greater than the ex-
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pected utility of not purchasing insurance (𝐸[𝑈(¬𝐼)]). The agent will
purchase insurance.

W

U(W)

W−R

U(W−R)

W−H

U(W−H)

E[¬ I]

E[U(¬ I)]

x

U(x)

Figure 12.2: Insurance choice by a risk averse expected utility maximiser

What is the intuition for this agent’s purchase of insurance?
Diminishing marginal utility means that the utility of average wealth
is greater than the average utility of wealth (e.g. 𝑈($0) + 𝑈($200) <
𝑈($100) + 𝑈($100)). Therefore, their expected utility is higher when
wealth is distributed evenly across the possible states of the world rather
than concentrated in one state - or in the case of a disaster, very low in
one state. The consumer insures as a way of evenly distributing wealth
across all possible states.

12.8 Insurance but not a lottery ticket

In your own words but using concepts from this subject explain why a risk averse
agent who makes decisions according to expected utility theory might purchase
insurance but not a lottery ticket.
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Answer

Both lotteries and insurance have a negative expected value.
The risk averse agent will typically reject a lottery as it has a small prob-
ability of a large win for the price of a small loss. Due to diminishing
marginal returns, the average weight given to each dollar in the large gain
is weighted much less than the average weight given to each dollar in the
small price. This makes the lottery unattractive.
In contrast, a risk averse agent may purchase insurance as for a small price
they can avoid the possibility of a large loss. Due to diminishing marginal
returns, the large loss can have much higher average weight given to each
dollar than to the weight given to each dollar for the small premium.

12.9 An anomaly in expected utility

Consider the following two choices:
Choice 1: Choose one of the following bets:
Bet A:

• $10,000 with probability: 11%
• $0 with probability: 89%

Bet B:

• $50,000 with probability: 10%
• $0 with probability: 90%

Choice 2: Choose one of the following bets:
Bet A’:

• $10,000 with probability: 100%

Bet B’:

• $50,000 with probability: 10%
• $10,000 with probability: 89%
• $0 with probability: 1%

Many people pick B for Choice 1 and A’ for Choice 2.
Does this pair of choices conform with Expected Utility Theory? Why?
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Answer

According to Expected Utility Theory, if an agent selects B:

0.10𝑈(50, 000) + 0.90𝑈(0) > 0.11𝑈(10, 000) + 0.89𝑈(0)

0.10𝑈(50, 000) + 0.01𝑈(0) > 0.11𝑈(10, 000)

According to Expected Utility Theory, if an agent selects A’:

𝑈(10, 000) > 0.10𝑈(50, 000) + 0.89𝑈(10, 000) + 0.01𝑈(0)

0.11𝑈(10, 000) > 0.89𝑈(50, 000) + 0.01𝑈(0)

This is a contradiction. Under expected utility theory, if an agent chooses
B it should choose B’. And if the agent chooses A it should choose A’.
This occurs due to a breach in the principle of independence.
Here is a representation of the choices.

The bets in the two shaded areas are the same. They are paired with
an outcomes of either $10,000 or $0. Preferring B to A and A’ to B’ is
a violation of the axiom of the independence of irrelevant alternatives:
Under that axiom, two gambles mixed with an irrelevant third gamble
will maintain the same order of preference as when the two are presented
independently of the third gamble.
Using this representation in the table, here is another way of understand-
ing why this combination of choices is an anomaly. Imagine there are 100
tickets numbered 1 to 100. One ticket will be drawn. If a ticket between 1
and 89 is drawn, you win the prize in the first column. If a ticket between
90 and 99 is drawn, you win the amount in the second. If a 100 is drawn,
you win the sum in the third.
Suppose that you know the ticket that is drawn is between 1 and 89.
Would you prefer A or B? As you would win $0 with either choice, you
will be indifferent. You will similarly be indifferent between A’ and B’,
winning $10,00 no matter what.
Suppose instead that a ticket between 90 and 100 is drawn, but you don’t
know which. You can see that if you prefer A to B, you should also prefer
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A’ to B’. In each choice you are effectively facing the same bet. Let’s
assume for the moment that you prefer B and B’.
Finally, suppose you don’t know what ticket will be drawn. We have
just determined that if you know the ticket is between 1 and 89 you are
indifferent between the options, but if between 90 and 100 is drawn you
prefer B and B’. You do not prefer A or A’ when the ticket range is 1 to
89 or 90 to 100, so you should not prefer A or A’ when the ticket number
is unknown.
Finally, using the formal definition for the independence of irrelevant al-
ternatives axiom:

• if 𝑥 and 𝑦 are lotteries with 𝑥 ≽ 𝑦 and
• 𝑝 is the probability that a third option 𝑧 is present, then:

𝑝𝑧 + (1 − 𝑝)𝑥 ≽ 𝑝𝑧 + (1 − 𝑝)𝑦

For each of the choices in our lottery:

• 𝑝 = 89%
• 𝑥 is a 100% chance of $10,000

• 𝑦 is a 0.01/(1-0.89) chance of $0 and 0.10/(1-0.89) chance of $50,000

• 𝑧 is $10,000 in choice 1 and $0 in choice 2, although 𝑧’s value does
not matter due to its assumed irrelevance.
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Part III

Prospect theory
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Prospect theory is a descriptive theory of decision-making under risk. It was
developed by Daniel Kahneman and Amos Tversky (1979) as a challenge to
expected utility theory.

Prospect theory has the following features:

• First, it has a value function - that is a function that ascribes a value to
each possible outcome. The value function incorporates reference depen-
dence, loss aversion and the reflection effect:

– Reference dependence means that the value of an outcome is judged
relative to a reference point.

– Loss aversion means the value of a loss is greater than the value of
an equivalent gain.

– The reflection effect means that agents are risk-averse in the gain
domain and risk-seeking in the loss domain

• Prospect theory also has a probability weighting function, whereby the
agent subjectively weights objective probabilities. Small probabilities
are weighted relatively more heavily than moderate probabilities. Those
weights are then applied to the value of each outcome.

Prospect theory is an “as if” model of decision-making. People do not perform
the calculations implicit in the application of prospect theory. Rather, they act
“as if” they are performing those calculations. That makes prospect theory a
descriptive theory, not a theory of how people actually make decisions.

The following sections break down each of these elements of prospect theory
and explain how they are incorporated in its implementation.
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Chapter 13

Reference dependence

Under prospect theory, people assess choices based on a reference point instead
of an absolute assessment of their position. Outcomes are coded as losses and
gains relative to that reference point.

Consider the following two scenarios:

• Scenario 1: You have not checked your share portfolio in a while. You
expect it to be worth around $40,000. Today when you check, it is worth
$30,000. Do you feel rich or poor?

• Scenario 2: You have not checked your share portfolio in a while. You
expect it to be worth around $20,000. Today when you check, it is worth
$30,000. Do you feel rich or poor?

Under expected utility theory, those two scenarios should feel the same as you
have 𝑈($30, 000) in both cases.

In contrast, under prospect theory, the value function - value function being
what the utility function is typically called in prospect theory - applies to
changes relative to the reference point.

If their initial reference point is their expectation, the value of that change is
𝑣($10, 000) or $v(-10, 000), depending on whether their expectation is exceeded
or not. The importance of that distinction becomes apparent when we examine
how people consider choices involving either losses or gains.

13.1 Theories of reference dependence

There are several theories on reference point formation. These include:
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• The status quo
• Lagged consumption
• Goals
• Recent expectations

13.1.1 The status quo

A common assumption in prospect theory is that the reference point is the
status quo, as it was for many examples in the original prospect theory paper
by Kahneman and Tversky (1979). The status quo implies a preference for the
current state. Any negative change is perceived as a loss.

The status quo appears straightforward and is a reasonable description in many
contexts, such as lab experiments.

However, the status quo as a reference point does not appear to be a useful
assumption for describing many economic interactions. Suppose you decide to
sell your bike. Do you see the foregoing of the bike as a loss?

What if you run a bike shop? Does every sale involve a feeling of loss? For
markets where intangible and fungible goods are exchanged (for example, the
stock market) the status quo assumption appears a poor fit.

13.1.2 Lagged consumption

A second theory is that the reference point is lagged consumption.

Imagine you win the lottery.

How do you feel one week after the draw?

How do you feel one year after the draw?

Your reference point likely reflects more recent consumption.

Lagged consumption introduces adaptation into reference point determination:

1. First, we react to shocks
2. Then the effect of the shock fades in time

13.1.3 Goals

Another theory is that our goals are our reference points.

Consider the following problem from Heath et al. (1999):
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Sally and Trish both follow workout plans that usually involve doing
25 sit-ups.
One day, Sally sets a goal of performing 31 sit-ups. She finds herself
very tired after performing 35 sit-ups and stops.
Trish sets a goal of performing 39 sit-ups. She finds herself very
tired after performing 35 sit-ups and stops.
What emotion is each person experiencing?

With goals as reference points, people see success or failure to achieve a goal as
a loss or gain. Although both Sally and Trish have the same performance, Sally
will have a positive emotional reaction and Trish a negative reaction.

13.1.4 Recent expectations

A fourth theory of reference point determination is recent expectations.

In this approach, the reference point is beliefs about future outcomes (Kőszegi
and Rabin (2006)). For example, a 5% pay rise when expecting 10% may be
perceived as a loss.

The expectations-based theory can produce the same predictions as alternative
theories:

1. If expectations are stable, recent expectations will reflect the status quo.
2. Recent consumption will shape expectations, making lagged consumption

a reasonable reference point.
3. Goals can also shape (or be shaped by) expectations
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Chapter 14

Loss aversion

Loss aversion is the concept that losses loom larger than gains. People feel more
strongly about a loss than an equivalent gain, so they are often willing to reject
gambles with a materially positive expected value.

For example, if someone feels losses with twice the feeling of gains, a 50:50
bet to win $550, lose $500 will be unattractive. This provides an alternative
explanation to the absurd levels of risk aversion required to reject this bet (as
discussed in Section 11.2).

14.1 A value function with loss aversion

This equation is an example of a value function with loss aversion:

𝑣(𝑥) = { 𝑥 where𝑥 ≥ 0
2𝑥 where𝑥 < 0

𝑥 is the outcome relative to the reference point.

In this value function, losses are experienced with twice the force of gains, with
each loss multiplied by a factor of two.

As an example, suppose someone is given $100. If their initial reference point
is their wealth before receiving the $100, 𝑥 will be $100. Therefore their change
in value is +100. If the same person instead loses $100, their change in value
would be -200.

This plot shows the increased effect of the loss under this value function:
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The greater slope of the curve in the loss domain, leading to a kink where the
axes intercept, is indicative of the greater effect of losses.

14.2 The endowment effect

The endowment effect is often used to illustrate loss aversion.

Kahneman et al. (1991) ran one of the most famous and replicated experiments
in economics.

They randomly assigned a free mug to members of a group and asked how much
money they would accept for returning the mug (i.e. willingness to accept). The
remaining participants were only shown a mug and asked about their willingness
to pay for the mug.

Kahneman et al. (1991) found that the willingness to accept ($5.75) was sub-
stantially higher than the willingness to pay ($2.25).

The endowment effect is this phenomenon where people impute additional value
to the items they own. The endowment effect is argued to be an empirical
expression of loss aversion. Willingness to accept is higher as it is payment to
incur the loss of the mug.

The endowment effect has been found in real estate markets, the stock market,
with basketball tickets and in other domains.
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14.2.1 Endowment effect example

Bruce has the following reference-dependent value function:

𝑣(𝑥) = { 𝑥 where𝑥 ≥ 0
2𝑥 where𝑥 < 0

𝑥 is the outcome relative to the reference point.

Assume Bruce has preferences over money (𝑚) and mugs (𝑐) as in this value
function:

𝑉 (𝑥) = 𝑣(𝑚 − 𝑟𝑚) + 𝑣(5𝑐 − 5𝑟𝑐)

𝑟𝑚 is Bruce’s reference point as it relates to money and 𝑟𝑐 is his reference point
as it relates to mugs.

To illustrate how this value function works, imagine Bruce has two mugs, and
he drops one. It breaks. His change in the value function is:

𝑉 (𝑥) = 𝑣(5𝑐 − 5𝑟𝑐)
= 𝑣(5 × 1 − 5 × 2)
= 𝑣(−5)
= −10 (as 𝑣(𝑥) = 2𝑥 when 𝑥 < 0)

The loss of a mug results in value of -10.

At the beginning of the experiment, Bruce is given a mug. Assuming Bruce’s
reference point adapts such that he considers the mug his, how much would
Bruce need to be paid to give up the mug?

We can calculate this by calculating what payment $𝑝 would make Bruce indif-
ferent between losing the mug and gaining $𝑝. That is the point where, after
losing the mug and receiving payment, Bruce’s change in value is equal to zero.

We assume a reference point for money of his current wealth and are instructed
that his reference point for mugs is ownership of the mug.
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𝑉 (𝑥) = 0

𝑉 (𝑥) = 𝑣(𝑚 − 𝑟𝑚) + 𝑣(5𝑐 − 5𝑟𝑐)

= 𝑣(𝑊 + 𝑝 − 𝑊) + 𝑣(5 × 0 − 5 × 1)

= 𝑣(𝑝) + 𝑣(−5)

= 𝑝 − 2 × 5

= 𝑝 − 10

𝑝 = 10

Bruce would need to be paid at least $10 to give up the mug. Giving up the
mug is seen as a loss and given greater weight than the money gained.

Now assume Bruce was not given a mug, but rather an opportunity to purchase
a mug. How much would Bruce be willing to pay for the mug?

We can calculate this by calculating what payment $𝑝 would make Bruce indif-
ferent between gaining the mug and losing $𝑝. That is the point where, after
receiving the mug and making payment, Bruce’s change in value is equal to zero.

We assume a reference point for money of his current wealth and are instructed
that his reference point for mugs is no mug.

𝑉 (𝑥) = 0

𝑉 (𝑥) = 𝑣(𝑚 − 𝑟𝑚) + 𝑣(5𝑐 − 5𝑟𝑐)

= 𝑣(𝑊 − 𝑝 − 𝑊) + 𝑣(5 × 1 − 5 × 0)

= 𝑣(−𝑝) + 𝑣(5)

= −2𝑝 + 5

𝑝 = 2.5

The most Bruce would be willing to pay for the mug is $2.50. He sees the
foregone money as a loss, giving it greater weight than the mug gained.
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Chapter 15

The reflection effect

The reflection effect involves an asymmetry in risk preferences in the gain and
loss domains.

When people make a risky choice related to gains, they are risk averse. They
prefer a certain option with value lower than the expected value of the risky
choice. When choosing an option in the loss domain, they become risk-seeking.
This phenomenon is called the reflection effect.

The reflection effect might also be thought of as diminishing sensitivity to gains
or losses in either direction. This contrasts with expected utility theory, where
the pain of losses increases as they grow in size.

15.1 The Asian Disease problem

The reflection effect explains the framing effects in the following experiment by
Kahneman and Tversky (1984).

One group of experimental subjects were asked the following hypothetical ques-
tion that would be unlikely to be asked post-Covid-19.

Imagine that the U.S. is preparing for the outbreak of an unusual
Asian disease, which is expected to kill 600 people. Two alternative
programs to combat the disease have been proposed. Assume that
the exact scientific estimates of the consequences of the programs
are as follows:
If Program A is adopted, 200 people will be saved.
If Program B is adopted, there is a one-third probability that 600
people will be saved and a two-thirds probability that no people will
be saved.
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Which of the two programs would you favour?

72% of participants chose option A.

Another group of experimental participants were shown the following:

Imagine that the U.S. is preparing for the outbreak of an unusual
Asian disease, which is expected to kill 600 people. Two alternative
programs to combat the disease have been proposed. Assume that
the exact scientific estimates of the consequences of the programs
are as follows:
If Program C is adopted, 400 people will die.
If Program D is adopted, there is a one-third probability that nobody
will die and a two-thirds probability that 600 people will die.
Which of the two programs would you favour?

22% of participants chose option C.

72% of participants chose A and 22% of participants chose option C. Yet these
two are equivalent. Option A and B are in the gain domain. Therefore the less
risky option A is preferred. Options C and D are in the loss domain. Therefore
the more risky option C is preferred.

15.2 The reflection effect in the value function

The following value function is an example of a function with diminishing sensi-
tivity to both gains and losses. This function can generate the reflection effect.

𝑣(𝑥) = { 𝑥 1
2 where𝑥 ≥ 0

−(−𝑥) 1
2 where𝑥 < 0

As 𝑥 increases in magnitude in either direction, the marginal increase in value
from each incremental unit of 𝑥 decreases.

This value function results in risk-averse behaviour in the gain domain and risk-
seeking behaviour in the loss domain. The following plot shows the diminishing
effect in each direction.

In the gain domain, the function is concave, indicating risk aversion. In the loss
domain, the convex function indicates risk-seeking behaviour.
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Figure 15.1: The reflection effect

15.3 An example

The following numerical example illustrates further.

Suppose an agent with the above value function is offered a choice between $10
for certain and a 50:50 bet to win $20 or end up with nothing. The value of
each choice is as follows.

𝑣(certainty) = 𝑣(10)

= 10 1
2

= 3.16

𝑣(bet) = 0.5 × 𝑣(20) + 0.5 × 𝑣(0)

= 0.5 × 20 1
2 + 0.5 × 0

= 2.24

The $10 for certain has a higher value for the agent. This agent is risk averse
in the gain domain and therefore prefers an amount for certain over a bet with
the same expected value.
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The following chart illustrates. Plotted are the value of the certain payment of
$10 and the outcome from winning the gamble, $20. A loss results in value of
0.

The value of the gamble itself is the probability-weighted average of the two
gamble outcomes. Due to diminishing marginal utility in the gain domain, the
value of the gamble is less than the value of $10 with certainty. The extra $10
over the certain outcome from winning the bet is less than the value of the first
$10. As a result, the agent does not want to risk the bet.

10

v(10)

20

v(20)

v(bet)

x

v(x)

Figure 15.2: The reflection effect in the gain domain

Suppose the agent is now offered another choice. They can now have a certain
loss of $10 or a 50:50 bet to lose $20 or to lose nothing. The value of each choice
is as follows.
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𝑣(certainty) = 𝑣(−10)

= −10 1
2

= −3.16

𝑣(bet) = 0.5 × 𝑣(−20) + 0.5 × 𝑣(0)

= −0.5 × 20 1
2 + 0.5 × 0

= −2.24

This bet delivers higher value than the certain loss, despite the bet and the
certain loss having the same expected value. The agent is willing to take a risk
to avoid a loss. They are risk seeking in the loss domain.

The following chart illustrates. Plotted are the value of the certain payment of
-$10 and the outcome from losing the gamble, -$20. A win results in value of 0.

The value of the gamble itself is the probability-weighted average of the two
gamble outcomes. Due to diminishing marginal utility in the loss domain, the
value of the gamble is greater than the value of -$10 with certainty. The potential
loss of another $10 over and above the certain loss is given less weight than the
first $10. As a result, the agent wants to take the risk.
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Figure 15.3: The reflection effect in the loss domain
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Chapter 16

The value function

The three phenomena, reference dependence, loss aversion and the reflection
effect, are each incorporated into the prospect theory value function.

First, the value function of prospect theory is defined on changes in wealth or
welfare rather than on final wealth levels. In other words, gains and losses are
defined relative to a reference point. The reference point might be the status
quo, lagged consumption, a goal, or an expectation about the outcome.

Utility from an outcome depends on the distance to the relevant reference level.
A multi-millionaire may reject a 50:50 bet to win $550, lose $500 because they
are not comparing the outcomes to their total wealth but rather are making a
judgment relative to the reference point of the status quo.

Second, perceptions of both gains and losses are characterised by diminishing
marginal sensitivity in either direction. Successive incremental changes have a
smaller marginal impact.

This is similar to decreasing marginal utility of wealth in expected utility theory.
Prospect theory and expected utility theory differ in the baseline. In expected
utility theory, the starting value is typically zero wealth, with increases from
there decreasing in marginal utility. In prospect theory, the starting value is
the reference point, with both increases and decreases having smaller marginal
effects as they increase in magnitude.

Third, losses loom larger than gains. People feel more strongly about a loss
than they do an equivalent gain. They are often willing to reject gambles with
a materially positive expected value.

These phenomena result in the following famous figure from Kahneman and
Tversky (1979).

1. The value function is centred on the reference point at the origin

2. There is a kink at the origin, with losses counting more than gains.
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3. There is diminishing sensitivity to further changes from the reference point
in both directions.

The following diagrams illustrate the different shapes of the expected utility
function and the Prospect Theory value function.

The expected utility function, in this case 𝑈(𝑥) = 𝑙𝑛(𝑥), has diminishing
marginal utility as utility increases. Utility is measured from a reference point
of zero.

For the prospect theory function, you can see the kink at zero, with losses
weighted more heavily than gains, with gains and losses determined relative to
a reference point. There is diminishing sensitivity to further changes in both
directions

The following equation is an example of a value function incorporating both loss
aversion and the reflection effect.

𝑣(𝑥) = { 𝑥 1
2 where𝑥 ≥ 0

−2(−𝑥) 1
2 where𝑥 < 0
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Figure 16.2: Prospect theory value function
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Losses are multiplied by 2, giving losses twice the weight of an equivalent gain
in the value function. This is loss aversion.

The reflection effect is implemented through losses and gains being to the power
of one-half. This leads to diminishing sensitivity to changes in both directions.
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Chapter 17

Probability weighting

In expected utility theory, probabilities enter the expected utility function lin-
early. For example, if an event is twice as likely as another outcome, it has
double the weight.

In contrast, prospect theory incorporates non-linear weighting of probabilities
by applying decision weights to each potential outcome.

17.1 Empirical evidence

Experimental observation indicates that we approximate linear weights for in-
termediate probabilities when making decisions under risk.

But, there is strong evidence that we overweight certain events, when the prob-
ability of the event is one, relative to near certain events, such as when the
probability is, say, 99%. This overweighting of certainty is effectively the same
as overweighting very low-probability events.

The following diagram from Tversky and Kahneman (1992) illustrates the rela-
tionship between objective probability and the decision weight applied to each
outcome. On the x-axis is the probability of the outcome. On the y-axis is the
weight applied to the value function for that probability. The straight line at
45 degrees represents linear weighting of probabilities. The curve represents the
weighting function.
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For this particular curve, where the probability is very low, such as around
𝑝 = 0.05, the weight is around 0.15. Similarly, at high probability, such as
𝑝 = 0.95, the weight is around 0.8. For intermediate probabilities, the observed
weight is relatively closer to the objective probability.

Kahneman (2011) calls the large psychological value of the change from 0 to
5% (or some other small probability) the possibility effect. He calls the large
psychological value of the change to 100% the certainty effect. We will pay a
lot more for certainty than near certainty.

17.2 The Allais Paradox

Probability weighting is often offered as an explanation for the Allais Paradox,
which I discuss in Section 11.1.

The Allais paradox can be illustrated as follows.

You are given the following pair of choices.

Choice 1: Choose one of the following bets:

Bet A:

• $2500 with probability: 33%
• $2400 with probability: 66%
• $0 with probability: 1%

Bet B:
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• $2400 with probability: 100%

People tend to prefer Bet B.
Choice 2: Choose one of the following bets:
Bet C:

• $2500 with probability: 33%

• $0 with probability: 67%

Bet D:

• $2400 with probability: 34%
• $0 with probability: 66%

People tend to prefer Bet C.
It can be shown that this pair of preferences, Bet B and Bet C, does not conform
with expected utility theory.
One explanation for this pair of decisions comes from probability weighting. If
you look at Bet B, the outcome is certain. Certain events tend to be over-
weighted relative to near-certain events, such as the 99% chance of $2400 or
$2500 in Bet A. An alternative way of thinking about this is that the 1% prob-
ability of nothing in Bet A is overweighted.
Conversely, the intermediate probabilities in Bet C and Bet D are weighted
closer to linearly, which can result in the slightly higher expected value Bet C
being preferred.

17.3 The decision weight

The weighting of probabilities is applied in prospect theory through a decision
weight 𝜋(𝑝𝑖). The decision weight is a function of the probability of the outcome.
This decision-weighting function reflects the empirical regularity that people
overweight certain events relative to near-certain events and overweight low-
probability events.
An example probability weighting function of a type proposed by Prelec (1998)
is as follows:

𝜋(𝑝) = 𝑒−(−𝑙𝑛(𝑝))𝛼𝑜 < 𝛼 < 1

This function, with 𝛼 = 0.6, is plotted below.
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Chapter 18

Prospect theory
implementation

Under prospect theory, people assess the weighted value of a prospect in two
phases: editing and evaluation.

18.1 Editing

Editing involves simplification of prospects for subsequent evaluation.

Kahneman and Tversky (1979) describe the editing phase as having four main
operations: coding, combination, segregation and cancellation.

• In the coding operation, prospects are coded as gains or losses relative to
a reference point.

• In the combination operation, prospects are simplified by combining prob-
abilities for identical outcomes. For example, (0.25, 200; 0.25, 200; 0.50,
0) will become (0.50, 200; 0.50, 0).

• During segregation, riskless components are segregated from risky com-
ponents. For example (0.80, 300; 0.20, 200) corresponds to a sure gain of
200 and the risky gamble (0.80, 100; 0.20, 0).

• Finally, in cancellation, components that are shared by two prospects are
ignored.
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18.2 Evaluation

In the evaluation phase, the prospects are evaluated, and the option with the
highest weighted value is chosen.

The weighted value of a prospect is made up of:

1. a decision weight applied to each probability 𝜋(𝑝𝑖)
2. the subjective value of each outcome 𝑣(𝑥𝑖)
These are applied through the following formula to calculate 𝑉 (𝑋), the weighted
value of the outcomes from gamble 𝑋.

𝑉 (𝑋) =
𝑛

∑
𝑖=1

𝜋(𝑝𝑖)𝑣(𝑥𝑖)

= 𝜋(𝑝1)𝑣(𝑥1) + 𝜋(𝑝2)𝑣(𝑥2) + ... + 𝜋(𝑝𝑛)𝑣(𝑥𝑛)

18.3 Fourfold pattern of risk attitudes

Prospect theory results in a four-fold pattern of risk attitudes, as shown in this
table.

Gains Losses
High probability Risk aversion Risk seeking
Low probability Risk seeking Risk aversion

For high-probability gambles, the reflection effect leads to people being people
risk averse in the domain of gains and risk seeking in the domain of losses.
For the top left quadrant, the low possibility of missing out on the gain is
overweighted, making the gamble less attractive and amplifying the risk-averse
behaviour. For the top right quadrant, the low probability of avoiding the loss
is also overweighted, amplifying the risk-seeking behaviour we see in the domain
of losses.

These top two quadrants can be illustrated by considering an offer to settle a
court case.

Imagine one party has a 95% chance of winning a large settlement. The shape of
the value function in the gain domain and the certainty effect make a settlement
offer attractive. Conversely, the other party overweights their 5% chance of
victory and is risk-seeking in the loss domain, making them unlikely to seek
settlement unless it is very favourable.
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But for low-probability gambles, as in the bottom two quadrants, the probability
weighting pushes decisions in the opposite direction to the value function. The
possibility of a gain is overweighted, making gambles attractive and inducing
risk-seeking behaviour. A similar effect occurs for a low probability of loss,
with the overweighted probability making the gamble less attractive, inducing
risk-averse behaviour.

The bottom two quadrants can be related to the purchase of insurance and
lotteries.

Lotteries involve a small probability of gains. As people overweight that small
probability of a win, people will be risk-seeking when considering whether to
purchase a lottery despite the gamble being in the gain domain where they are
typically risk averse.

Insurance involves a small probability of loss. As people overweight the small
probability of a loss, people will be risk-averse when considering whether to
purchase insurance despite normally being risk seeking in the loss domain.
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Chapter 19

Prospect theory examples

19.1 A 50:50 gamble

Suppose an agent has the following reference-dependent value function:

𝑣(𝑥) = {
𝑥 1

2 where𝑥 ≥ 0
−2(−𝑥) 1

2 where𝑥 < 0

Where 𝑥 is the realised outcome relative to the reference point.

Assume that the agent’s reference point is the status quo and that they weight
outcomes linearly.

The agent is offered the gamble A:

(0.5, $110; 0.5, −$100)

19.1.1 Accept or reject

Will they want to play this gamble?

The weighted value of the gamble is:
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𝑉 (𝐴) = 𝑝1𝑣(𝑥1) + 𝑝2𝑣(𝑥2)

= 0.5 × 𝑣(110) + 0.5 × 𝑣(−100)

= 0.5 × (110) 1
2 − 0.5 × 2 × (100) 1

2

= −4.76

They will not want to play this gamble as it has a negative value for the agent.
They could receive a weighted value of 0 by simply not playing.

The reason for this negative value is that the agent is loss averse. The loss of
$100 is given twice the weight of an equivalent gain.

The following chart illustrates. Note that 𝑉 (𝐴) is a probability-weighted average
of the two possible outcomes from the bet, and is projected from the straight
line between those two outcomes.

−100

v(−100)

110

v(110)

E[A]

V(A)

x

v(x)

Figure 19.1: A 50:50 gamble

19.1.2 Accept or reject after loss

Suppose the agent loses their wallet containing $100. They feel bad about it and
perceive it as a loss. Their reference point is unchanged at the original status
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quo, but the amount of money they have after any outcome is $100 less than
otherwise. Would they be willing to take gamble A now?

After losing $100 but not changing their reference point, they have two possible
outcomes relative to their reference point: a gain of $10 (winning $110 minus
the lost money in the wallet) and a loss of $200 (losing $100 and also losing
their wallet).

The weighted value of gamble A is now:

𝑉 (𝐴) = 𝑝1𝑣(𝑥1) + 𝑝2𝑣(𝑥2)

= 0.5 × 𝑣(110 − 100) − 0.5 × 𝑣(−100 − 100)

= 0.5 × (10) 1
2 − 0.5 × 2 × (200) 1

2

= −12.56

The value of not playing the gamble involves remaining with a loss of $100:

𝑉 (¬𝐴) = 𝑣(−100)

= −2 × (100) 1
2

= −20

They will now want to play the gamble as it has a greater value than staying
with their current loss. The gamble becomes attractive as it allows recovery the
loss. The agent is risk seeking in the loss domain. (They would even accept a
50:50 gamble to win $100, lose $100 with an expected value of zero.)

The choice is illustrated in the following chart.

19.1.3 Accept or reject after adaptation to loss

The agent has now adapted to their loss of $100. The new reference point is the
new wealth level incorporating the loss wallet. Would they take gamble A now?

We are now back to an identical situation as when they were first offered the
gamble with their reference point as the status quo. They will not want to
partake in the gamble.
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Figure 19.2: A 50:50 gamble after a loss

19.1.4 Accept or reject after win

The agent wins $10,000 at the casino. They feel good about their win, so their
reference point remains at their wealth excluding the win. Would they take
gamble A now?
With the additional $10,000, the value from the gamble is:

𝑉 (𝐴) = 𝑝1𝑣(𝑥1) + 𝑝2𝑣(𝑥2)

= 0.5 × 𝑣(10000 + 110) + 0.5 × 𝑣(10000 − 100)

= 0.5 × (10110) 1
2 + 0.5 × (9900) 1

2

= 100.02

The value of not playing the gamble is:

𝑉 (¬𝐴) = 𝑣(10000)

= 10000 1
2

= 100
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The gamble is now attractive. The agent is less risk averse at a higher wealth.
Further, the gamble is entirely in the gain domain, meaning that loss aversion
does not affect the decision.
The following chart illustrates. The agent becomes increasingly risk neutral
as we move further into the gain domain. You can see this through the line
becoming approximately straight. As a result, at a high enough wealth, the
positive value bet becomes attractive

9,900

v(9,900)

10,000

v(10,000)

10,110

v(10,110)

E[A]

V(A)

x

v(x)

Figure 19.3: A 50:50 gamble after a win (not to scale)

19.2 A 60:40 gamble

Paddy makes decisions in accordance with prospect theory, has wealth $300 and
value function:

𝑣(𝑥) = {
𝑥 1

2 where 𝑥 ≥ 0
−2(−𝑥) 1

2 where 𝑥 < 0

Assume Paddy weights probabilities linearly.
Paddy is offered the following bet A:

• a 60% probability to win $150
• a 40% probability to lose $100.
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19.2.1 Accept or reject

Does Paddy accept bet A?

Paddy compares the value of taking versus not taking the bet:

𝑉 (A) = 𝑝1𝑣(𝑥1) + 𝑝2𝑣(𝑥2)

= 0.6 × 𝑣(150) − 0.4 × 𝑣(100)

= 0.6 × (150) 1
2 − 0.4 × 2 × (100) 1

2

= −0.652

The value of not taking the bet is zero. Paddy would have no change from his
reference point.

Paddy rejects the bet as 𝑉 (𝐴) is less than the 𝑉 (0) = 0 that Paddy could
get by simply rejecting the bet. He rejects the bet due to his loss aversion
and the diminishing sensitivity to gains. The loss is weighted double that of an
equivalent gain, outweighing both the larger potential gain and 60% probability.

The following figure shows Paddy’s value function, the bets and the value of the
bets. The figure illustrates that Paddy’s rejection is caused by both Paddy’s
loss aversion and his diminishing sensitivity in the gain domain, which has a
larger effect than the diminishing sensitivity in the loss domain due to the larger
magnitude of the potential gain.

19.2.2 Accept or reject after loss

Following some bad economic news, Paddy’s wealth declines to $150. Paddy
cannot get over the loss, so his reference point remains his former wealth of
$300.

Paddy is offered bet A again. Does Paddy accept the bet?

As Paddy is now in the loss domain, the two potential outcomes from the bet
are a gain of $0 and a loss of $250. His alternative is remaining at a point $150
below his reference point (𝐿).
Paddy compares the value of taking versus not taking the bet is:
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Figure 19.4: A 60:40 gamble

𝑉 (A) = 𝑝1𝑣(𝑥1) + 𝑝2𝑣(𝑥2)

= 0.6 × 𝑣(−150 + 150) + 0.4 × 𝑣(−150 − 100)

= 0.6 × (−150 + 150) 1
2 − 0.4 × 2 × (150 + 100) 1

2

= −12.649

𝑉 (L) = 𝑣(𝐿)

= −2 × (150) 1
2

= −24.495

Paddy accepts the bet as 𝑉 (𝐴) is greater than the value of the certain loss of
$150.

The following figure shows Paddy’s value function, the bets and the value of the
bets. The figure shows that Paddy accepts the bet as he is risk seeking in the
loss domain. The potential loss of another $100 results in a smaller incremental
loss of value than an equivalent win of $100.
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Figure 19.5: A 60:40 gamble after a loss

19.3 A gamble in the gain domain

Suppose Bill has the following reference-dependent value function:

𝑣(𝑥) = { 𝑥1/2 where 𝑥 ≥ 0
−2(−𝑥)1/2 where 𝑥 < 0

𝑥 is the change in Bill’s position relative to his reference point.

(a) What feature of Bill’s value function leads to the reflection effect?

The power of 1
2 applied in both the gain and loss domain leads to diminishing

sensitivity to gains and losses. The value function is concave in the gain domain
and convex in the loss domain. This curvature leads to risk-averse behaviour in
the gain domain and risk-seeking behaviour in the loss domain. This change in
risk preference between the gain and loss domains is the reflection effect.

(b) Bill considers a choice between $100 for certain and gamble A: (0.5, $250;
0.5, 0).

(i) Will Bill prefer the $100 or gamble A?

The weighted value of gamble A is:
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𝑉 (𝐴) = 0.5 × 2500.5 + 0.5 × 00.5

= 7.91

The value of the $100 for certain is:

𝑉 ($100) = 1000.5

= 10

As 𝑉 (𝐴) > 𝑉 ($100), Bill will prefer gamble the $100 for certain.

(ii) What features of the value function lead Bill to accept or reject the gamble?

Bill rejects the gamble because of the diminishing sensitivity to gains. This
leads him to be risk averse and reject the higher expected value option of the
gamble.

Loss aversion does not affect his decision as all possible outcomes (at least under
our assumed reference point) are in the gain domain. Note that we do not use
the value function for 𝑥 < 0 in determining Bill’s choice.

The following chart shows Bill’s choices before the shock, whereby all possible
outcomes are in the gain domain. The possible outcomes from the gamble are
zero and $250. The certain outcome on offer is $100. The expected value of the
gamble is $125.

As he is risk averse, the value of the $100 for certain exceeds the weighted value
of the gamble. This can be seen through 𝑣(𝐴) being less than 𝑣($100). Bill will
therefore choose the $100 for certain.

(c) Suppose Bill were to experience a large negative shock to his wealth that
does not immediately change his reference point. Could this shock cause him
to change his decision concerning the $100 and gamble A?

A large negative shock to Bill’s wealth would cause him to change his decision
concerning the $100 and gamble A. The shock would move the two possible
outcomes into the loss domain, where Bill is risk seeking. (For this answer, I
am assuming a shock of greater than $250. A smaller shock would change the
analysis.)

The following diagram illustrates Bill’s decision after the shock. After the loss of
wealth but no change in reference point, the outcomes would now be in the loss
domain. Let 𝐿 be a large negative number, the loss. The potential outcomes
from the gamble are now 𝐿 and 𝐿 + 250. The certain outcome of accepting the
$100 is 𝐿 + 100. The expected value of the gamble is 𝐿 + 125. The weighted
value of the gamble is 𝑣(𝐿+125). The value of the certain outcome is 𝑣(𝐿+100).
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Figure 19.6: Bill’s consideration of gamble A and the $100

Due to the convex curvature of the curve in the loss domain, Bill is risk seeking.
As a result, the utility of the gamble is greater than the utility of the certain
outcome. This can be seen in 𝑣(𝐿 + 𝐴) being greater than 𝑣(𝐿 + 100).

19.4 Insurance

The classical economic explanation for the purchase of insurance is based on
the risk aversion of consumers. Insurance has a negative expected value due to
the insurer’s profit and administrative costs. However, consumers are willing to
buy insurance as the consumer prefers the certainty of the premium payment
to the risk of suffering an uninsured loss.
Prospect theory provides an alternative explanation. The purchase of insurance
involves a certain loss (the premium) or a gamble involving the possibility of
either a large loss or the status quo. As prospect theory has people as risk
seeking in the loss domain, we would not expect them to purchase insurance.
However, under prospect theory people also overweight small probabilities. This
overweighting of small probabilities can make the purchase of insurance attrac-
tive even though it is in the loss domain. This combination of the loss domain
but small probabilities is the bottom-right quadrant of the fourfold pattern to
risk attitudes generated by prospect theory.
The following numerical example is an illustration.
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Figure 19.7: Bill’s consideration of gamble A and the $100 after the shock

An agent is considering insurance against bushfire for its $1,000,000 house. The
house has a 1 in 1000 (𝑝 = 0.001) chance of burning down. An insurer is willing
to offer full coverage for $1100. (Note: $1000 is the actuarially fair price, the
additional $100 might represent profit or administrative costs.)

19.4.1 Expected value

The first question we will ask is whether an expected value maximiser or risk-
neutral person would purchase the insurance.

A risk-neutral agent will choose the option with the highest expected value. In
Section 12.2 I showed that the expected value of purchasing insurance is $100
less than the expected value of risking the house burning down. A risk-neutral
agent (who maximises expected value) would not purchase this insurance.

19.4.2 Expected utility

Would a risk-averse agent purchase the insurance? Suppose they have a loga-
rithmic utility function (𝑈(𝑥) = 𝑙𝑛(𝑥)) and they have $10,000 in cash in addition
to their house, giving them wealth (𝑊 ) of $1,010,000.

In Section 12.7 I showed that the expected utility of purchasing insurance is
greater than the expected utility of not purchasing insurance. This agent will
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insure against the fire despite it being actuarially unfair.

The intuition for this is that diminishing marginal utility means that the utility
of average wealth is greater than the average utility of wealth. Therefore, their
expected utility is higher when wealth is distributed evenly across the possible
states of the world rather than concentrated in one state - or in the case of
a disaster, very low in one state. The consumer insures as a way of evenly
distributing wealth across all possible states.

19.4.3 The reflection effect

Consider an agent who is risk seeking in the domain of losses but weights prob-
ability linearly. Their value function is:

𝑣(𝑥) = { 𝑥0.8 where𝑥 ≥ 0
−2(−𝑥)0.8 where𝑥 < 0

Where 𝑥 is the realised outcome relative to the reference point.

Determination of the reference point can be arbitrary. What if you pay insurance
every year? Could the reference point then be wealth minus the insurance
payment (meaning the insurance payment is in the gain domain)?

Taking the reference point as current wealth, would this agent purchase the
insurance?

𝑉 (𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒) = 𝑣(−1, 100)
= −(1, 100)0.8

= −271.1

𝑉 (𝑑𝑜𝑛′𝑡) = 0.999 × (0) + 0.001 × 𝑣(−1, 000, 000)
= 0.999 × 0 − 0.001 × (1, 000, 000)0.8

= −63.1

As 𝑉 (𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒) < 𝑉 (𝑑𝑜𝑛′𝑡), the agent does not purchase insurance. The di-
minishing feeling of loss leads to them weigh the certain loss of the premium
relatively more heavily than the chance of losing the value of their house.

Including loss aversion in the value function does not change the decision as all
possible outcomes are in the loss domain.
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Figure 19.8: The reflection effect and insurance

19.4.4 Probability weighting

Would a person who is risk seeking in the domain of losses (i.e. the value function
with reflection effect above) and applies the decision weights described below
purchase the insurance?

They apply decision weights as per the following table:

Probability0.001 0.01 0.1 0.25 0.5 0.75 0.9 0.99 0.999
Weight0.01 0.05 0.15 0.3 0.5 0.7 0.85 0.95 0.99
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𝑉 (𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒) = 𝑣(−1, 100)
= −(1, 100)0.8

= −271

𝑉 (𝑑𝑜𝑛′𝑡) =
𝑛

∑
𝑖=1

𝜋(𝑝𝑖)𝑣(𝑥𝑖)

= 𝜋(0.999) × 𝑣(0) + 𝜋(0.001) × 𝑣(−1, 000, 000)
= 0.99 × 0 − 0.01 × (1, 000, 000)0.8

= −631

Although the diminishing feeling of loss leads to them weigh the certain loss
of the premium relatively more heavily than the chance of losing the value of
their house, the overweighting of the probability of fire leads them to purchase
insurance. Again, if we had included loss aversion it would not have changed
the decision as all possible outcomes are in the loss domain.

19.5 A multi-bet

A multi-bet allows a gambler to combine a series of individual bets into a single
wager, with the odds of all the single bets multiplied to achieve the final payoff.
The gambler only wins the wager if all of the single bets are successful. Or in
other words, if a single bet is lost, the entire multi-bet is lost. A multi-bet is
also known as an “accumulator” bet or “parlay”.

For example, a multi-bet might combine the following bets:

• GWS Giants to defeat Adelaide Crows: $1.65 (that is, $1.65 is paid out
for each $1 bet)

• Fremantle Dockers to defeat Sydney Swans: $2.10
• Essendon Bombers to defeat Geelong Cats: $3.50
• North Melbourne Kangaroos to defeat Melbourne Demons: $4.00
• West Coast Eagles to defeat Brisbane Lions: $6.00

If all five bets are successful, the gambler would win $291 for every $1 they have
bet. (That is 1.65 x 2.10 x 3.50 x 4 x 6 = 291.06). If any of GWS, Fremantle,
Essendon, North Melbourne, or the West Coast Eagles lose, the bet is lost.

Many bookmakers also offer a “cash out” option for multi-bets. If the bet has
been successful up to the date of the “cash out”, a gambler can “cash out”
their bet before the remaining games are complete at a price offered by the
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bookmaker. The “cash out” offers are typically unattractive relative to the
expected value of seeing out the rest of the multi-bet.

For example, Betty places a $20 multi-bet involving all nine games of Australian
Rules Football one weekend. After eight games, she has picked all eight winners.
If Geelong defeats North Melbourne in the ninth game she will win $10,000.
Geelong is a heavy favourite, with a 95% probability of winning.

Betty checks the cash out price for the multi-bet and sees that she can cash out
the bet now for $7,000, a great return on her initial $20. That return, however,
is much below the expected value of seeing the multi-bet through to the end
($9,500).

Betty makes decisions according to prospect theory. That is, she judges gains
and losses relative to a reference point, is loss averse, and has diminishing sen-
sitivity to gains and losses in both directions. She also overweights certainty
(which is equivalent to overweighting small probabilities).

What elements of prospect theory might lead Betty to cash out the bet before
the final game?

We can consider multiple potential reference points Betty might use to make
her decision.

One potential reference point is Betty’s position before making the bet. In that
case, Betty is comparing:

• a certain gain of $6980 and
• a gamble with a loss of $20 and a gain of $9,980.

The gamble is largely in the gain domain in which Betty is risk averse. Her risk
aversion may lead her to cash out rather than take the gamble. The potential
$20 loss may be overweighted due to loss aversion, but is a relatively insignificant
sum.

Another potential reference point is Betty’s position immediately after making
the bet. She has adapted to the payment of $20. Here the analysis is similar.
Betty is comparing:

• a certain gain of $7000 and
• a gamble with a gain of $10,000 or a payment of zero

The gamble is completely in the gain domain, where Betty is risk averse. Her
risk aversion may lead her to cash out rather than gamble. Loss aversion is
irrelevant in this instance.

Another potential reference point is that Betty is taking the $7000 to be locked
in. This means she is comparing:
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• staying at the status quo with certainty and
• a gamble involving a potential loss of $7000 and a gain of $3,000.

In this case, the combination of risk aversion reducing the value of the gain and
loss aversion increasing the relative magnitude of the pain of loss could lead her
to cash out. This would be counteracted by the convex curvature in the loss
domain, but the loss aversion effect would likely dominate.

Finally, Betty’s weighting of probabilities will also affect her decision. Over-
weighting certainty means overweighting small probabilities, such as the small
probability of Geelong losing. This overweighting would push her towards cash-
ing out as the loss would have greater weight in her calculation of the weighted
value of each option.
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Chapter 20

Prospect theory
applications

In this part, I discuss some applied problems that have been analysed using
prospect theory.

20.1 Taxi driver behaviour on rainy days

Why can’t you find a taxi on a rainy day?
One possible explanation comes from Colin Camerer et al. (1997), who studied
the labour supply of New York City taxi drivers.
The taxi drivers rent a cab for a 12-hour period for a fixed fee, plus petrol.
Within the 12 hours, a driver can choose how long they keep the taxi out.
A taxi driver’s effective wage can vary for many reasons, such as weather, subway
breakdowns, day of the week and conferences. When they are busier, they have
a higher effective wage. That is, they earn more fares.
In two of the three samples they examined, Camerer et al. found that drivers
drove less when their effective wages were higher. This was the case for inex-
perienced drivers in all three samples, and they drove significantly less than
experienced drivers when wages were high.
This contrasts with the basic prediction of economic theory that supply increases
with price. Supply curves slope upwards.
Camerer et al. argue that this result is because taxi drivers have a daily earnings
target, beyond which they derive little additional utility. This leads them to
work until they reach their target, which occurs more quickly on days with a
higher wage.
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They argued that the drivers engage in “narrow bracketing” when they make
decisions each day, isolating them as single decisions (how much should I work
today?) rather than thinking about them as a stream (how much should I work
each day this week?)

Aversion to falling below the reference point is consistent with loss aversion,
with a result below the reference point causing stronger feelings than a result a
similar amount above the reference point.

There have been numerous follow-up studies of taxi drivers. The results of these
studies have varied.

• Farber (2005) studied New York cab drivers and found that the decision
to stop work was primarily a function of how many hours had been worked
up to that point in the day. He identified the difference between his and
Camerer et al.’s result as being due to different empirical methods and
measurement problems with the Camerer et al. data.

• Farber (2008) found that a labour supply model with reference-dependent
targets better fits than a standard neoclassical model. However, there
was substantial variation day-to-day in any given driver’s reference income
level and most shifts ended before that reference income was reached.

• Farber (2015) used a much larger dataset on New York taxi driver be-
haviour and found that, as standard economic theory would predict, taxi
drivers drive more when they can earn more. Farber also found that
drivers did not earn more when it was raining.

• Finally, Martin (2017) examined taxi driver labour supply using the S-
shaped reference dependence of prospect theory. That is, Martin used a
model with the reflection effect, with risk-seeking behaviour in the loss
domain and risk aversion in the gain domain. Martin found evidence that
taxi driver behaviour was consistent with this full form of prospect theory.
He differentiated from the other papers on the basis that they considered
a narrower version of reference dependence focusing on loss aversion only.
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20.2 The disposition effect

The disposition effect is the tendency for investors to sell stocks that are in the
gain domain relative to the purchase price and to hold stocks that are in the
loss domain.

While tax implications or portfolio rebalancing are both potential explanations
for asymmetric behaviour relating to the sale of stocks, these factors are insuf-
ficient to explain the observed behaviour.

Most behavioural explanations have turned to prospect theory.

For example, Shefrin and Statman (1985) argued that the disposition effect is
driven by the reflection effect, whereby investors are risk seeking in the loss
domain and risk averse in the gain domain. To demonstrate how it works, they
present the following scenario:

[C]onsider an investor who purchased a stock one month ago for $50
and who finds that the stock is now selling at $40. The investor
must now decide whether to realize the loss or hold the stock for
one more period. To simplify the discussion, assume that there are
no taxes or transaction costs. In addition, suppose that one of two
equiprobable outcomes will emerge during the coming period: either
the stock will increase in price by $10 or decrease in price by $10.
According to prospect theory, our investor frames his choice as a
choice between the following two lotteries:
A. Sell the stock now, thereby realizing what had been a $10 “paper
loss”.
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B. Hold the stock for one more period, given 50-50 odds between
losing an additional $10 or “breaking even.”

For an investor who is risk seeking in the loss domain, holding would be at-
tractive. The following figure illustrates that the certain loss of $10 (from the
reference point of $50) gives lower value than holding for a chance of eliminating
the loss.

−10

v(sell)

−20

v(−20)

v(hold)

x

v(x)

Figure 20.1: The disposition effect in the loss domain

If we craft an alternative scenario where the stock is now selling at $60, selling
would realise a $10 gain, while holding the stock would be a risky prospect with
the same expected value. An investor who is risk averse in the gain domain will
sell.

The following figure illustrates that the certain gain of $10 (from the reference
point of $50) gives higher value than holding for a chance of a larger gain.

20.3 The housing market

Genesove and Mayer (2001) examined housing data from Boston. They found
that owners subject to nominal losses set higher asking prices, with the increase
in asking price being 25% to 35% of the difference between the expected selling
price and their original purchase price.
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Figure 20.2: The disposition effect in the gain domain

They also found that these owners attain higher prices, covering around 3% to
18% of that difference.

This suggests sellers are averse to realising nominal losses. However, note that
the aversion leads to a better outcome.
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Chapter 21

Prospect theory exercises

21.1 Changes in probability

You are in a draw for $1 million. Consider the following four scenarios where
your chances of winning increases by 5%:

A) From 0% to 5%
B) From 5% to 10%
C) From 50% to 55%
D) From 95% to 100%

Most people report that scenarios A) and D) represent better news. Why?

Answer

There is strong experimental evidence that we overweight certain events
relative to near certain events. In this instance, we will tend to over-
weight the shift to a certain result (scenario D) relative to shifts involving
intermediate probabilities (e.g. scenario B and C). This overweighting of
certainty is effectively the same as overweighting low probability events.
As a result, the probability shift that provides an initial chance at $1
million is also overweighted (scenario A).
The result is that scenarios A and D tend to be seen as better news than
scenarios B and C.
The following diagram illustrates. On the horizontal axis is the probability
(𝑝). On the vertical axis is the decision weight applied to each probability
(𝜋). If people applied probability weights linearly as they do in expected
utility theory, the dashed line would represent how probabilities map to
weights. Under prospect theory, people overweight small probabilities and
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underweight probabilities short of certainty. The solid line represents one
functional mapping of these possibility and certainty effects.
From this diagram, you can then see the change in decision weight from
each change in probability. The changes from 0% to 5% and from 95% to
100% represent much larger changes in decision weight than the changes
in intermediate probabilities.

21.2 Bitcoin

Edna, Ferdinand and Gretel each bought some Bitcoin at $50,000. The price
rose to $80,000 and then dropped to $60,000, at which time they sold it.

All three are loss averse and have the following reference-dependent value func-
tion:

𝑣(𝑥) = { 𝑥 where 𝑥 ≥ 0
2𝑥 where 𝑥 < 0

Edna uses the purchase price as her reference point. Ferdinand uses the peak
price as his reference point. Gretel uses the sale price as her reference point.

What is the change in value for each person? Who is happiest?
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Answer

Value for Edna:

𝑣(𝑥) = 𝑣(60 − 50)
= 10

Value for Ferdinand:

𝑣(𝑥) = 𝑣(60 − 80)
= −2 × 30
= −60

Value for Gretel:

𝑣(𝑥) = 𝑣(60 − 60)
= 0

Edna is happiest whereas Ferdinand is most disappointed. Both Edna and
Gretel see the peak price as a foregone gain, whereas Ferdinand sees the
failure to sell at the peak as a loss.

21.3 Reference points

Megan has the following reference-dependent value function:

𝑣(𝑥) = { 𝑥 where 𝑥 ≥ 0
2𝑥 where 𝑥 < 0

where 𝑥 is the realised outcome relative to the reference point.

a) If you look at 𝑣(𝑥), we expect Megan to be:

• loss averse
• have no decreased sensitivity to changes of greater magnitude.

Why?
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Answer

Megan is loss averse as the slope of the value function in the loss domain
is steeper than in the gain domain. One unit of loss leads to a greater
change in value than one unit of gain.
There is no decreases sensitivity as the value function is linear in both
domains. Sensitivity is constant. As the size of the loss or gain increases,
the change in value remains constant despite the increasing magnitude.

b) Assume Megan has received a birthday card from her aunt, which some years
contains $25 and other years contains nothing.

She opens the card and it contains $10.

Consider two alternative reference points: Megan is pessimistic and expects no
money in the card, and Megan is optimistic and expects $25.

Compute Megan’s value under each reference point. Which reference point
yields higher value?

Answer

The value of the $10 from the reference point of expecting nothing is:

𝑣(𝑥) = 𝑣(10)

= 10
The value of the $10 from the reference point of expecting $25 is:

𝑣(𝑥) = 𝑣(10 − 25)

= 2 ∗ (−15)

= −30

Megan has higher value when she does not expect to receive any money.
She gets the value of a gain of $10. If she expected the $25, she suffered
the value of a loss of $15.

c) Megan has received the $10 in the card and a piece of birthday cake. Her
value function over money and pieces of birthday cake is:

𝑣(𝑥) = 𝑣(𝑚 − 𝑟𝑚) + 𝑣(4𝑐 − 4𝑟𝑐)

Where 𝑚 is the amount of money she receives, 𝑟𝑚 is her reference point of how
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much money she expects, 𝑐 is how many pieces of birthday cake she receives
and 𝑟𝑐 is how many pieces of birthday cake she expects.

To illustrate how this value function works, imagine Megan expects two pieces
of cake and her dog jumps onto the table and eats one of them. Her change in
the value function is:

𝑣(𝑥) = 𝑣(4𝑐 − 4𝑟𝑐)
= 𝑣(4 × 1 − 4 × 2)
= 𝑣(−4)

As 𝑣(𝑥) = 2𝑥 when 𝑥 < 0:

𝑣(−4) = −8

For this question, assume Megan does not believe that she will receive any
money and she expects to eat two pieces of birthday cake. Her reference point
is therefore 𝑟𝑚 = 0 and 𝑟𝑐 = 2. She receives $10 from her aunt.

Her brother - who loves cake - offers to buy one of her pieces of birthday cake.
What price 𝑝𝑠 would make Megan indifferent between selling and keeping the
piece of cake?

Answer

Megan will be indifferent when the value from each option is the same:

𝑣(10 − 0 + 𝑝𝑠)⏟⏟⏟⏟⏟⏟⏟
Value from
unexpected
money plus

payment
for cake

+𝑣(4 × 1 − 4 × 2)⏟⏟⏟⏟⏟⏟⏟
Value lost from
giving up cake

= 𝑣(10 − 0)⏟
Value from
unexpected

money

+𝑣 (4 × 2 − 4 × 2)⏟⏟⏟⏟⏟⏟⏟
Value of

keeping cake

𝑣(10 + 𝑝𝑠) + 𝑣(−4) = 𝑣(10) + 𝑣(0)

10 + 𝑝𝑠 − 8 = 10

𝑝𝑠 = 8

d) Assume that Megan expects to receive only one piece of birthday cake. Her
brother then offers to sell her his piece of cake. For 𝑟𝑚 = 0 and 𝑟𝑐 = 1, what
price 𝑝𝑏 would make Megan indifferent between buying the cake and eating only
her own piece?
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Answer

Megan will be indifferent when the value from each option is the same:

𝑣(10 − 0 − 𝑝𝑏)⏟⏟⏟⏟⏟⏟⏟
Value from
unexpected

money minus
payment
for cake

+ 𝑣(4 × 2 − 4 × 1)⏟⏟⏟⏟⏟⏟⏟
Value gained from

buying cake

= 𝑣(10 − 0)⏟
Value from
unexpected

money

+𝑣 (4 × 1 − 4 × 1)⏟⏟⏟⏟⏟⏟⏟
Value of

only one piece

𝑣(10 − 𝑝𝑏) + 𝑣(4) = 𝑣(10) + 𝑣(0)

10 − 𝑝𝑏 + 4 = 10

𝑝𝑏 = 4

e) Why is there a difference between the price at which Megan was willing to
sell cake in part c) compared to the price she was willing to pay in part d)?

Answer

The willingness to accept in part c) is higher than the willingness to pay
in part d) as in part c) the foregone cake is coded as a loss. This loss
reduces value at twice the rate of a gain in cake. The payment for the
cake in both parts is in the gain domain due to the birthday present of
$10, so the payment received or paid is given less weight than any loss.

21.4 Saving on a purchase

Consider the following two scenarios:
A) You are considering buying a new type of coffee bean for your home coffee
machine. It costs $50 at your local hipster cafe, but you discover that it is for
sale for $40 at the supermarket 20 minutes drive from your home. Do you make
the trip?
B) You are considering buying a new laptop. It costs $1990 at your local com-
puter store, but you discover that it is for sale for $1980 at another computer
store 20 minutes drive from your home. Do you make the trip?
When people are presented with scenarios such as this, they tend to report
that they are less likely to make the trip in Scenario B for the more expensive
product.
Explain how an S-shaped value function with diminishing value in both gains
and losses could result in this behaviour.
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Answer

Diminishing value means that the absolute difference between 𝑣(−40) and
𝑣(−50) is much larger than the absolute difference between 𝑣(−1980) and
𝑣(−1990). For example, suppose the value function was:

𝑣(𝑥) = { 𝑥 1
2 where 𝑥 ≥ 0

−2(−𝑥) 1
2 where 𝑥 < 0

This would mean that the difference between 𝑣(−40) and 𝑣(−50) is:

𝑣(−40) − 𝑣(−50) = −2(40 1
2 − 50 1

2 )
= 1.493025

The difference between 𝑣(−1980) and 𝑣(−1990) is:

𝑣(−1980) − 𝑣(−1990) = −2(1980 1
2 − 1990 1

2 )
= 0.2244502

Much less value is gained by driving for the 20 minutes across town for
the computer.

21.5 A 60:40 gamble

Suppose an agent has the following reference-dependent value function:
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𝑣(𝑥) = { 𝑥3/4 where 𝑥 ≥ 0
−2(−𝑥)3/4 where 𝑥 < 0

Where 𝑥 is the realised outcome relative to the reference point.
Assume that the agent’s reference point is the status quo and the agent is offered
the gamble A:

($100, 0.6; −$100, 0.4)
a) Will they want to play this gamble? Why?

Answer

The utility from the gamble is:

𝑉 (𝐴) = 0.6𝑣(100) − 0.4𝑣(−100)
= 0.6 × (100)0.75 − 0.4 × 2 × (100)0.75

= −6.3245553

They will not want to play this gamble as it has a negative value for the
agent. They could receive value of 0 by simply not playing.
The reason for this negative value is that the agent is loss averse. The
loss of $100 is given twice the weight of an equivalent gain, meaning that
they reject the bet despite a win of $100 being more probable.

b) Suppose the agent takes this gamble and loses $100. They feel bad about
it and perceive it as a loss. Their reference point is unchanged at the original
status quo. They are offered gamble A again? Do they accept this second time?
Why?

Answer

After losing $100 but not changing their reference point, they have two
possible outcomes relative to their reference point: recovery of their loss
of $100 so they come out even and a loss of $200 (losing $100 twice).

𝑉 (𝐴) = 0.6𝑣(−100 + 10) − 0.4𝑣(−100 − 100)
= 0.6 × (0)0.75 − 0.4 × 2 × (200)0.75

= −42.5463672

The utility of not playing the gamble involves remaining with a loss of
$100:
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𝑉 (¬𝐴) = 𝑣(−100)
= −2 × (100)0.75

= −63.2455532

They will now want to play the gamble as it has a greater value than
staying with their current loss. The reason the gamble becomes attractive
is because it gives an opportunity to recover the loss. The agent is risk
seeking over the loss domain.

c) The agent is offered a new job for which they receive a $50,000 sign-on
bonus. They adapt to their new wealth, so their reference point changes to
accommodate their new situation. They are now offered gamble A again. Do
they accept? Why?

Answer

With their new reference point, this question is effectively the same as
part a). They will refuse the bet.

21.6 A 50:50 gamble

Suppose Tim has the following reference-dependent value function:

𝑣(𝑥) = { 𝑥1/2 where 𝑥 ≥ 0
−2(−𝑥)1/2 where 𝑥 < 0

𝑥 is the change in Tim’s position relative to his reference point.

a) What feature of Tim’s value function leads to loss aversion? Explain.

Answer

The part of the value function that applies when 𝑥 < 0 is increased by a
factor of two relative to that part of the value function for when 𝑥 > 0.
This is done by multiplying the bottom portion by 2.

b) Tim considers the gamble A: ($250, 0.5; -$100, 0.5).

i) Will Tim want to play this gamble?
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Answer

𝑉 (𝐴) = 𝑝1𝑣(𝑥1) + 𝑝2𝑣(𝑥2)
= 0.5𝑣($250) + 0.5𝑣(−$100)
= 0.5 ∗ 2501/2 − 0.5 ∗ 2 ∗ 1001/2

= −2.0943058

Tim has negative value from the gamble, when he could simply have zero
value by declining. He rejects.

ii) Explain what features of the value function lead him to accept or reject
the gamble.

Answer

Two features of the value function lead him to reject:

• Tim is loss averse (the -2 in the bottom equation), which leads him
to give twice the weight to losses relative to an equal sized gain.

• Tim has diminishing sensitivity to losses and gains. The larger gain
is reduced proportionately more by this diminishing sensitivity.

c) Suppose Tim were to experience a large positive or negative shock to his
wealth that does not immediately change his reference point. Could either
shock cause him to change his decision concerning gamble A? Explain.

Answer

Both a positive and negative shock could lead Tim to change his decision.
A large positive shock would place the entire bet into the gain domain.
That would remove loss aversion as a factor in rejecting the bet. Given
the high expected value, that would likely be sufficient for him to accept.
However, a large shock would also place Tim further up the value function
to a region where it is more linear (i.e. he is less risk averse). This will
also increase the tendency to accept the bet.
A large negative shock would place the entire bet into the loss domain.
That would remove loss aversion as a factor in rejecting the bet as there
is no gain against which the loss can be given relatively greater weight.
Due to diminishing sensitivity to losses, Tim is also risk seeking in the loss
domain. This would lead him to accept any bet with a positive expected
value.
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21.7 Insurance

Explain how probability weighting as proposed under Prospect Theory can lead
a person to simultaneously gamble and purchase insurance.

Answer

Decisions under Prospect Theory are the outcome of two factors:

• The value function that gives a value to each outcome relative to a
reference point

• The probability weighting function that gives a decision weight to
the probability of each outcome.

The Prospect Theory value function leads people to be risk averse in the
domain of gains and risk seeking in the loss domain. This combination
would tend to lead people to purchase neither insurance or lotteries. Their
risk seeking behaviour could lead them to avoid the certain loss of the
insurance premium. They would rather risk the loss of the insurable asset.

Their risk averse behaviour in the domain of gains would make a lottery
with a negative expected value unattractive.
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However, the probability weighting function can counteract that effect.
By overweighting the small probability of an insurable event or a lottery
win, the agent may decide to insure or purchase a lottery despite the risk
attitudes inherent in the value function.
As an example, consider an agent who overweights a probability of 1 in
a million lottery win by 1,000 times, acting as though they would win
the $1 million prize once every 1000 lotteries. They also overweight the
probability of a one in a thousand fire that would destroy their million
dollar house by 100 times, acting as though it is a 1-in-10 chance. (These
numbers are extreme, but I am creating a toy example.)
Suppose the lottery ticket is $1 and their utility function is:

𝑣(𝑥) = { 𝑥1/2 where 𝑥 ≥ 0
−(−𝑥)1/2 where 𝑥 < 0

Value of purchasing the lottery:

𝑣(𝑥) =
𝑛

∑
𝑖=1

𝜋(𝑥𝑖)𝑣(𝑥𝑖)

= 0.001 × (1000000 − 1)1/2 − 0.999 × (1)1/2

= 0.000999
The value of not purchasing the lottery is zero.
They will purchase the lottery as it has the higher value.
Value of not purchasing insurance, which involves the potential loss of the
house:
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𝑣(𝑥) =
𝑛

∑
𝑖=1

𝜋(𝑥𝑖)𝑣(𝑥𝑖)

= −0.1 × (1000000)1/2 + 0.9 × (0)1/2

= −100

Value of purchasing insurance, which is the certain loss of the premium:

𝑣(𝑥) =
𝑛

∑
𝑖=1

𝜋(𝑥𝑖)𝑣(𝑥𝑖)

= −(1000)1/2

= −31.6

They purchase insurance as it has higher value than not purchasing it.

21.8 Locking in a win

Amber sued a tabloid newspaper for defamation. The trial has completed and
the judge has retired to make her decision.
Amber’s lawyer tells her that she has a 95% chance of winning and receiving
$1,000,000 in damages, meaning she has a 5% chance of leaving with nothing.
(Ignore any potential costs.) She then receives an offer of settlement from the
newspaper for $800,000. Amber accepts.
Use the fourfold pattern of attitudes to risk under prospect theory to explore
why Amber accepted the settlement offer.

Answer

Rejecting the offer has a higher expected value than the value of the
settlement:

𝐸[reject] = 𝑝𝑤𝑖𝑛𝑥𝑤𝑖𝑛
= 0.95 × 1000000
= 950000

Two forces under prospect theory would lead Amber to take the option
with the lower expected value:
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• People are risk averse in the gain domain. Amber would prefer
certainty to a gamble with the same expected value, and depending
on the level of risk aversion, would be willing to accept an amount
for certain lower than the expected value of the bet. That is, the
certainty equivalent of the gamble would be less than its expected
value.

• People overweight small probabilities. The 5% probability of losing
is likely overweighted by Amber.

21.9 Lotteries

A common intervention to encourage behaviour change is to offer a lottery ticket
as an incentive. For example, a lottery ticket might be offered to people who
complete a survey.

The government is considering whether it should incentivise vaccination with
either:

i) a payment of $10 or

ii) a lottery ticket with a 1 in a million chance of winning $10 million.

Use concepts from prospect theory to explain why either option might be more
successful.

Answer

There are two opposing forces that could lead to either option being pre-
ferred.
Both the lottery and payment of $10 are in the gain domain. Under
prospect theory, people tend to be risk averse in the gain domain. This
will make the payment, which has the same expected value as the lottery,
more attractive.
Conversely, under prospect theory, people do not weight outcomes directly
by their probability. They apply decision weights that tend to overweight
small probabilities and underweight probabilities just short of certainty.
This means that the small chance of $10 million will likely be overweighted.
This could lead to the value of the lottery exceeding that of a certain
payment.
Which effect dominates depends on how risk-averse people are and how
much they overweight the probability.
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Part IV

Intertemporal choice
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Intertemporal choice refers to decisions involving costs and benefits occurring
at different times.

Almost every decision is an intertemporal choice. Intertemporal choices can be
important because:

• First, feedback may not be immediate. For example, when will you realise
that your retirement savings are inadequate?)

• Second, your choices may be irreversible. What can you do if you reach
retirement age with little savings?

• And finally, stakes can be large, affecting your health, wealth, family or
career.

One of the core principles of intertemporal choice is that people tend to discount
future costs and benefits. They prefer to receive benefits earlier, rather than
later, and prefer to incur costs later rather than earlier.

Discrete versus continuous time

In this subject, we will consider what is called “discrete time”. In discrete time,
time occurs in a series of steps. For example, we might consider the following
sequence of time periods:

𝑡0, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, ...

At each discrete moment in time, the agent might make a decision or receive
a payoff. We assume that there is no moment between those two steps. For
example, if 𝑡 = 0 is today and 𝑡 = 1 is in one week, we consider only those two
moments, not any time between.

Discrete time contrasts with “continuous time”, where time is a continuous
variable. Time is divisible into an infinite number of steps. For example, if
𝑡 = 0 is today and 𝑡 = 1 is in one week, there is an infinite number of other
points in time between.

Notation

One way of representing a stream of payoffs in discrete time is the following
form:

𝑆 = (𝑡1, 𝑥1; 𝑡2, 𝑥2; ...; 𝑡𝑛, 𝑥𝑛)
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𝑡𝑖 is the period in which the payoff is received. 𝑥𝑖 is the payoff received in period
𝑡𝑖.
Consider these two simple streams of payoffs.

For both streams, period 𝑡1 = 0, which is now. Period 𝑡2 = 1, which is one year
from today.

The first stream is $100 now and nothing in a year.

𝑆1 = (0, $100; 1, 0)

The second stream is nothing today and $107 in one year.

𝑆2 = (0, 0; 1, $107)

Would you prefer 𝑆1 or 𝑆2?
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Chapter 22

Exponential discounting

Exponential discounting occurs when an agent discounts future costs and ben-
efits at a consistent rate through time.

Under exponential discounting, each additional period of delay results in a dis-
count of a future cost or benefit by a factor of 𝛿. The discount factor 𝛿 is a
number between 0 and 1. The higher the discount factor, the less the agent
discounts future costs and benefits.

You will often see discussion of the ”discount rate”, 𝑟. In discrete time, the
relationship between 𝛿 and 𝑟 is as follows:

𝛿 = 1
1 + 𝑟

A larger discount factor implies less discounting. A larger discount rate implies
more discounting.

Under the standard model of exponential discounting, an agent with a choice
between alternative streams of payoffs will seek to maximize the discounted
utility of the future path of consumption.

The following equation is an example of exponential discounting, with a stream
of costs or benefits 𝑥0 through to 𝑥𝑇 incurred at periods 0 through to 𝑇 . 𝑈0 is
utility of the stream of payoffs at time 𝑡 = 0. 𝑥𝑡 is the payoff in period 𝑡.
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𝑈0 = 𝑢(𝑥0) + 𝛿𝑢(𝑥1) + 𝛿2𝑢(𝑥2) + 𝛿3𝑢(𝑥3) + ... + 𝛿𝑇 𝑢(𝑥𝑇 )

=
𝑡=𝑇
∑
𝑡=0

𝛿𝑡𝑢(𝑥𝑡)

0 ≤ 𝛿 ≤ 1

Each period of delay results in a discount of the future cost or benefit by a factor
of 𝛿. One period of delay results in a discount of 𝛿. Two periods of delay results
in a discount of 𝛿2. Three periods of delay results in a discount of 𝛿3 and so on.

The degree of discounting in this equation evolves each period as 1, 𝛿, 𝛿2, 𝛿3, 𝛿4

and so on. This results in a smooth decline in present value of a future payoff
over time.

22.1 Visualising exponential discounting

Figure 22.1 illustrates the effect of exponential discounting. The figure plots the
size of the discount as a function of 𝑡 for an exponential discounter with 𝛿 = 0.9
and 𝛿 = 0.75.
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Figure 22.1: Exponential discount curves
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22.2 Exponential discounted utility model as-
sumptions

The standard model of exponential discounting is underpinned by several as-
sumptions.

22.2.1 Time-consistency

The first is time consistency.

Once the agent starts moving along the consumption path, they are time-
consistent with their initial plan. For example, consider an agent facing the
following two choices:

Would you like $100 today or $110 next week?

Would you like $100 next week or $110 in two weeks?

An exponential discounter will choose $100 in both choices or $110 in both
choices. The reason is that after one week the second choice effectively becomes
the same as the first choice. Time consistency implies that they will continue
to want to make the same choice regardless of when they are making it.

22.2.2 Consumption independence

A second assumption is consumption independence.

Consumption independence means that utility in period 𝑡 + 𝑘 is independent
of consumption in any other period. An outcome’s utility is unaffected by
outcomes in prior or future periods.

Imagine a world where an exponential discounter intends to consume a be-
havioural economics subject.

Suppose that exponential discounter wants to consume lecture 1 at 𝑡 + 3 and
lecture 2 at 𝑡+4. Under consumption independence, if the agent does not attend
lecture 1, they still expect to benefit from lecture 2 at 𝑡 + 4 consistent with the
plan they decided at 𝑡.
This assumption allows us to write 𝑥 = 𝑥1 + 𝑥2 + 𝑥3 + ... + 𝑥𝑛. That is, good 𝑥
can be split, allocated and moved across periods without changing the value of
that good beyond the effect of the discount.

22.2.3 Stationary preferences

A third assumption is stationary preferences.
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That is, 𝑈𝑡 = 𝑈𝑡=𝐾.

The utility function is stationary across periods. The functional form of 𝑈𝑡 is
the same as the functional form of 𝑈𝑡+𝑘.

That means that if someone likes ice cream today, they will get the same utility
from ice cream at a future time of consumption. Any preference for ice cream
today versus tomorrow comes from the discounting of future consumption, not
from changes in taste.

Similarly, with stationary preferences, you would not learn to appreciate the
taste of wine over time.

22.2.4 Utility independence

A fourth assumption is utility independence.

Under utility independence, all that matters is maximizing the sum of dis-
counted utilities. Decision makers have no preference for the distribution of
utilities. They don’t seek to delay gratification or get unpleasant things out of
the way.
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Chapter 23

Exponential discounting
examples

In this part, I will work through several numerical examples of decisions by an
exponential discounter.

23.1 Example 1

Suppose we have an exponential-discounting agent with discount factor 𝛿 = 0.95
and utility each period of 𝑢(𝑥𝑛) = 𝑥𝑛. They are offered two choices.

Choice 1: Would this agent prefer $100 today (𝑡 = 0) or $110 next week (𝑡 = 1)?
To determine this, we calculate the discounted utility of each option. The agent
will prefer the option with the highest discounted utility.

The discounted utility of the $100 today is:

𝑈0(0, $100) = 𝑢($100)
= 100

The discounted utility of the $110 next week is:

𝑈0(1, $110) = 𝛿𝑢($110)
= 0.95 × 110
= 104.5
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The exponential discounter will prefer to receive $110 next week as it leads to
higher discounted utility.
Choice 2: Would this agent prefer $100 next week (𝑡 = 1) or $110 in two weeks
(𝑡 = 2)?
The discounted utility of the $100 next week is:

𝑈0(1, $100) = 𝛿𝑢($110)
= 0.95 × 100
= 95

The discounted utility of the $110 in two weeks is:

𝑈0(2, $110) = 𝛿2𝑢($110)
= 0.952 × 110
= 99.275

The exponential discounter will prefer to receive $110 in two weeks.
The set of decisions across Choice 1 and Choice 2 are time consistent. If the
agent selected $110 in two weeks for Choice 2 and was given a chance to change
their choice after one week (which is effectively Choice 1), they would not change
their decision.
Figure 23.1 visualises the effect of discounting in Choice 2.
The two bars represent the options: $100 at 𝑡 = 1 and $110 at 𝑡 = 2. The
line from each represents the discounted value of that option at each time. For
example, at 𝑡 = 1 the discounted utility of the $100 received at 𝑡 = 1 is $100
and the discounted utility of the $110 received at 𝑡 = 2 is $104.50. We can read
those values from the line. For any time 𝑡 we can determine which option would
be preferred by seeing which line is higher.
You will note that the two lines do not cross. For an exponential discounter, if
one line is higher at any particular time 𝑡, it is higher at all times.
Figure 23.2 visualises Choice 2 reconsidered at 𝑡 = 1. The discounted value of
the $100 received immediately is less than the discounted utility of $110 in one
week.

23.2 Example 2

Suppose we have an exponential discounter with discount factor 𝛿 = 0.95 per
week and utility each period of 𝑢(𝑥𝑛) = 𝑥𝑛
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Figure 23.1: Choice 2

Figure 23.2: Choice 1
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They are offered $100 today. What sum would they need to be offered in one
year (52 weeks) to prefer that later payment to the $100 today?

The discounted utility of the $100 today is:

𝑈0(0, $100) = 𝑢($100)
= 100

The discounted utility of the sum 𝑦 received in 52 weeks is:

𝑈0(52, $𝑦) = 𝛿52𝑢($𝑥)
= 0.9552 × 𝑦

They will prefer $𝑦 in 52 weeks if 𝑈(52, $𝑦) is greater than 100.

𝑈0(52, $𝑦) > 100

0.9552 × 𝑦 > 100

𝑦 > 100
0.9552

𝑦 > $1440.03

The agent would be willing to wait a year for payment if they were paid more
than $1440.03.

Figure 23.3 visualises this problem. The bar at 𝑡 = 52 represents the $1440.03
that the agent would need to be paid to prefer that payment to $100 today. The
line extended from that bar back to 𝑡 = 0 indicates the discounted value of that
payment at any time 𝑡. At 𝑡 = 0 the discounted value of the $1440.03 is $100.

23.3 Example 3

Suppose we have an exponential discounter with discount factor 𝛿 = 0.75 and
utility each period of 𝑢(𝑥𝑛) = 𝑥𝑛.

Would this agent prefer $10 in five days (𝑡 = 5) or $20 in 10 days (𝑡 = 10)?
The discounted utility of the $10 in five days is:
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Figure 23.3: Example 2

𝑈0(5, $10) = 𝛿5𝑢($10)
= 0.755 × 10
= 2.37

The discounted utility of the $20 in 10 days is:

𝑈0(10, $20) = 𝛿10𝑢($20)
= 0.7510 × 20
= 1.13

Discounted utility is higher for the $10 in five days. The agent will prefer to
receive $10 in five days.
What if their discount rate was 𝛿 = 0.95?
The discounted utility of the $10 in five days is:

𝑈0(5, $10) = 𝛿5𝑢($10)
= 0.955 × 10
= 7.74

The discounted utility of the $20 in 10 days is:
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𝑈0(10, $20) = 𝛿10𝑢($20)
= 0.9510 × 20
= 11.97

Discounted utility is higher for the $20 in 10 days. This agent will prefer to
receive $20 in 10 days.

Figure 23.4 visualises the choices and the agents’ discounting of the payoffs.

In both charts, vertical bars represent the $10 in five days and $20 in 10 days.
The lines projecting back to 𝑡 = 0 represent the discounted value of those payoffs
at each time.

When 𝛿 = 0.75, the heavy discount to the more distant payoff means that it has
a lower discounted utility than the smaller, sooner payment of $10. When 𝛿 =
0.95, the discount is less severe and the $20 in 10 days has a higher discounted
utility than the $10 in five days.

(a) 𝛿 = 0.75 (b) 𝛿 = 0.95

Figure 23.4: Exponential discounting
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Chapter 24

Exponential discounting
anomalies

Empirical investigation of people’s choices over time has revealed several anoma-
lies that are inconsistent with the exponential discounting model.

24.1 Estimation of 𝛿
The first anomaly is that estimates of the discount factor 𝛿 are highly variable.
Frederick et al. (2002) plotted estimates of 𝛿 from a set of published papers.
Figure 1a shows that the estimated discount factor increases with the time
horizon. If studies with horizons of one year or less are excluded, there is no
relationship between the discount factor and time horizon (Figure 1b).

This suggests that the discount factor may vary with time.
Similar evidence comes from R. Thaler (1981). He estimated the discount rate
of experimental subjects by presenting them with a choice between a prize today
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or a larger prize later. In each case, the subjects were asked, given the size of
the prize that could be received today, how large would the future prize would
need to be such that waiting would be as attractive as receiving the money now.

For example, some subjects were asked how large a future prize would need to
be such that they would be happy to wait three months, one year or three years
rather than receiving $15 today. The median answers were $30, $60 and $100
respectively. If you use these answers to calculate an implied discount rate,
the result is 277%, 139% and 63%. It can be seen that this discount rate is
decreasing with the length of delay (which matches a pattern of an increasing
discount factor with the length of delay).

24.2 Preference reversal

A second anomaly relates to the consistency of choices over time. An exponential
discounter is time consistent in that if they prefer one of two future payoffs, they
will continue to prefer that same payoff as they get closer to the time of receipt.
They do not experience what is called a preference reversal.

Green et al. (1994) offered experimental subjects choices between a smaller
reward and a delayed larger reward while varying the delay. For example, they
offered the choice between:

• first, $20 now or $50 in three months

• second, $20 in one week or $50 in three months and one week.

Across the choices offered to the experimental subjects, there was a consistent
effect whereby incrementing the delay for both rewards equally would result
in a switch from the small sooner reward to the latter larger reward. Adding
one week to both rewards in the first choice can result in people changing their
preference between the sooner and later reward.

A similar result was found in a study by Kirby and Herrnstein (1995). In
that case, 34 of 36 experimental subjects reversed preference from a larger later
reward to a smaller earlier reward as the delays to both decreased.

Here is one intuitive set of choices from R. Thaler (1981).

Choice A: Choose between one apple today and two apples tomorrow.

Choice B: Choose between one apple in one year and two apples in one year
plus one day.

Some people might select one apple today in the first choice, but no-one would
select one apple in one year in the second choice.

169



24.2.1 Healthy choices

We can also see evidence for preference reversal when choosing between a healthy
and unhealthy option.

Read and Leeuwen (1998) asked 200 study participants to choose between
healthy or unhealthy snacks that they would receive in one week. For example,
for their snack next week, they might choose between a banana, apple, Mars
bar or Snickers bar. 48% of men and 51% of women chose the healthy choice.

At the scheduled time one week later the experimenters asked the study par-
ticipants to choose again. Although no reference was made to their previous
choice, this effectively allowed them to change their mind. This time, only 25%
of men and 11% of women chose the healthy snack. While many changed from
the healthy to the unhealthy snack, almost no one changed from the unhealthy
to the healthy snack.

This result is evidence of time inconsistency. The participants made different
decisions depending upon when they made the decision.
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Chapter 25

Present bias

One concept developed to account for anomalies in the exponential discounting
model is present bias.

Present bias occurs when we place additional weight on costs and benefits at
the present time.

25.1 The 𝛽𝛿 (beta-delta) model

One simple model of present bias is the quasi-hyperbolic discounting model,
otherwise known as the 𝛽𝛿 model. 1

Under the quasi-hyperbolic discounting model, two discount factors are applied
to future costs and benefits.

The first is 𝛽 (beta), the short-term discount factor. All future payoffs are
discounted by a single application of 𝛽, a number between 0 and 1. The discount
𝛽 is applied simply because the payoff is not immediate. The higher the short-
term discount factor, the less the agent discounts payoffs that are not received
now.

The second is the discount factor 𝛿 that is also present in the exponential dis-
counting model. Each additional period of delay results in a discount of a future
cost or benefit by a factor of 𝛿. The discount factor 𝛿 is also a number between 0
and 1. The higher the discount factor, the less the agent discounts future costs
and benefits.

As for exponential discounting, an agent with a choice between alternative
streams of payoffs under the 𝛽𝛿 model will seek to maximize the discounted
utility of the future path of consumption.

1This model is a discrete-time version of hyperbolic discounting.
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The following equation provides a mathematical representation of the 𝛽𝛿 model,
with a stream of costs or benefits 𝑥0 through to 𝑥𝑇 incurred at periods 0 through
to 𝑇 . 𝑈0 is the discounted utility of the stream of payoffs at time 𝑡 = 0. 𝑥𝑡 is
the payoff in period 𝑡.

𝑈0 = 𝑢(𝑥0) + 𝛽𝛿𝑢(𝑥1) + 𝛽𝛿2𝑢(𝑥2) + ... + 𝛽𝛿𝑇 𝑢(𝑥𝑇 )

= 𝑢(𝑥0) + 𝛽
𝑡=𝑇
∑
𝑡=1

𝛿𝑡𝑢(𝑥𝑡)

0 ≤ 𝛿 ≤ 1

0 ≤ 𝛽 ≤ 1

The first period of delay results in a discount of the cost or benefit by a factor
of 𝛽𝛿. Each further period of delay results in a discount of 𝛿.
As a result, the degree of discounting evolves over time as 1, 𝛽𝛿, 𝛽𝛿2, 𝛽𝛿3, 𝛽𝛿4

and so on. This progression results in a larger discount for the first period of
delay (𝛽𝛿) than the degree of discount for each subsequent period of delay (𝛿).
There is a relative weighting toward the present.

Present bias of this nature can result in time inconsistency, with decisions at
one point reversed at another if the agent is given the opportunity to change
their mind.

25.2 Visualising present bias

The following figures illustrate the effect of present bias.

Figure 25.1 plots the size of the discount as a function of 𝑡 for a present-biased
agent with 𝛽 = 0.75 and 𝛿 = 0.9. The discount curve for an exponential
discounter with 𝛿 = 0.9 is also plotted. The curve for the present-biased agent
has a large drop for the first period of delay. From then on, the discount is
proportionally the same as for the exponential discounter.

We can read off the total discount factor at any time 𝑡 from this chart. For
example, the total discount factor for the exponential discounter is 0.9 at 𝑡 = 1,
0.81 at 𝑡 = 2 and 0.43 at 𝑡 = 8. The total discount factor for the present-biased
agent is 0.675 at 𝑡 = 1, 0.61 at 𝑡 = 2 and 0.32 at 𝑡 = 8.
Figure 25.2 shows the discount curve for present-biased and exponential dis-
counting agents with different parameters. The present-biased agent and expo-
nential discounter have the same discount factor 𝛿 = 0.75. The present-biased
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Figure 25.1: Discount curves 1

agent also has the short-term discount factor 𝛽 = 0.75. Again, the present-
biased agent discounts the first period of delay more than the exponential dis-
counter.

Figure 25.3 shows a scenario where the present-biased agent has a higher dis-
count factor 𝛿 = 0.9 than the exponential discounter with 𝛿 = 0.75. The
present-biased agent also has the short-term discount factor 𝛽 = 0.75. The
present-biased agent discounts the first period of delay more than the expo-
nential discounter. However, due to their higher 𝛿, the present-biased agent
discounts additional periods of delay less than the exponential discounter and
ultimately has a lower total discount for periods further in the future.

25.3 Assumptions

The exponential discounting model is underpinned by many assumptions. These
include:

• Time consistency, whereby once the agent starts moving along the con-
sumption path, they are time-consistent with their initial plan.

• Consumption independence, whereby utility in period 𝑡+𝑘 is independent
of consumption in any other period. An outcome’s utility is unaffected by
outcomes in prior or future periods.
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Figure 25.2: Discount curves 2

Figure 25.3: Discount curves 3
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• Stationary preferences, whereby 𝑈𝑡 = 𝑈𝑡+𝑘. The utility function is sta-
tionary across periods.

• Utility independence, whereby all that matters is maximising the sum of
discounted utilities. Decision makers are assumed to have no preference
for the distribution of utilities.

Under the 𝛽𝛿 model, we are loosening the assumption of time consistency. An
agent may change their initial plan over time.

However, we maintain the assumptions of consumption independence, stationary
preferences and utility independence.
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Chapter 26

Present bias examples

In the section, I provide some simple examples of the 𝛽𝛿 model.

26.1 Exponential discounting versus present
bias

For the first example, we will consider the following pair of choices presented to
an exponential discounting agent and a present-biased agent and contrast their
decisions.

Choice 1: Would you like $100 today or $110 next week?

Choice 2: Would you like $100 next week or $110 in two weeks?

26.1.1 The exponential discounter

The exponential discounter has 𝛿 = 0.95 and utility each period of 𝑢(𝑥𝑛) = 𝑥𝑛.

Would the exponential discounter prefer $100 today (𝑡 = 0) or $110 next week
(𝑡 = 1)?
When we worked through this problem in Section 23.1, we calculated that:

𝑈0(0, $100) = 100 < 104.5 = 𝑈0(1, $110)

The exponential discounter will prefer to receive $110 next week as it leads to
higher discounted utility.

Choice 2: Would the exponential discounter prefer $100 next week (𝑡 = 1) or
$110 in two weeks (𝑡 = 2)?
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When we worked through this problem in Section 23.1, we calculated that:

𝑈0(1, $100) = 95 < 99.275 = 𝑈0(2, $110)

The exponential discounter will prefer to receive $110 in two weeks.

The set of decisions across Choice 1 and Choice 2 are time consistent. If the
exponential-discounting agent selected $110 in two weeks for Choice 2 and was
given a chance to change their choice after one week (which is effectively an
offer of Choice 1), they would not change their decision.

26.1.2 The present-biased agent

The present biased agent has 𝛿 = 0.95, 𝛽 = 0.95 and utility each period of
𝑢(𝑥𝑛) = 𝑥𝑛.

Choice 1: Would this agent prefer $100 today (𝑡 = 0) or $110 next week (𝑡 = 1)?
The discounted utility of the $100 today is:

𝑈0(0, $100) = 𝑢($100)

= 100

The discounted utility of the $110 next week is:

𝑈0(1, $110) = 𝑢(𝑥0) + 𝛽𝑢(𝑥1)

= 𝛽𝛿𝑢($110)

= 0.95 × 0.95 × 110

= 99.275

As 𝑈0(0, $100) > 𝑈0(1, $110), the present-biased agent will prefer to receive
$100 this week.

Choice 2: Would this present-biased agent prefer $100 next week (𝑡 = 1) or $110
in two weeks (𝑡 = 2)?
The discounted utility of the $100 next week is:
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𝑈0(1, $100) = 𝑢(𝑥0) + 𝛽𝑢(𝑥1) + 𝛽𝛿2𝑢(𝑥2)

= 𝛽𝛿𝑢($100)

= 0.95 × 0.95 × 100

= 90.25

The discounted utility of the $110 in two weeks is:

𝑈0(2, $110) = 𝑢(𝑥0) + 𝛽𝑢(𝑥1) + 𝛽𝛿2𝑢(𝑥2)

= 𝛽𝛿2𝑢($110)

= 0.95 × 0.952 × 110

= 94.31

As 𝑈0(1, $100) = 90.25 < 94.31 = 𝑈0(2, $110), the present-biased agent will
prefer to receive $110 in two weeks.

If we consider those two choices by the present-biased agent together, we see
the following pattern.

For choice 1, the present-biased agent will prefer $100 now to $110 in one week.
Their preference for benefits now due to the short-term discount factor 𝛽 leads
them to prefer the immediate payoff.

For choice 2, the present-biased agent will prefer $110 in two weeks to $100
in one week. They are willing to wait longer for a larger reward, with both
outcomes in the future and subject to the short-term discount factor 𝛽.
Consider what would happen if this present-biased agent selected the $110 in two
weeks in Choice 2, but after one week we asked if they would like to reconsider
their choice. They are effectively being offered Choice 1. This would then lead
them to change their mind and take the immediate $100.

This combination of decisions is time inconsistent. The present-biased agent’s
actions are not consistent with their initial plan.

We can see this change in preference in the following diagram.

The vertical bars represent the payments of $100 and $110. The lines projecting
back from the bars to the y-axis represent the discounted utility of each payment
at each time.

There is a kink in the line projecting from the $110 in two weeks, representing
the effect of the short-term discount factor 𝛽. Between 𝑡 = 1 and 𝑡 = 2 both
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the short-term and usual discount factors are applied. This leads to that part
of the curve having a steeper slope than between 𝑡 = 0 and 𝑡 = 1 where only
the usual discount factor is applied.

At 𝑡 = 0 the discounted utility of the $110 at 𝑡 = 2 is higher and that payment
is therefore preferred. At 𝑡 = 1 when the $100 is no longer discounted by the
short-term discount factor 𝛽, it suddenly becomes more attractive. If offered on
that day, would be chosen in substitute of the $110 due in another week.

26.2 A longer delay

Assume there is a present-biased agent with 𝛽 = 0.75, 𝛿 = 0.9 and utility each
period of 𝑢(𝑥𝑛) = 𝑥𝑛.

Would this agent prefer $10 in five days (𝑡 = 5) or $20 in 10 days (𝑡 = 10)?
The discounted utility of the $10 in five days is:

𝑈0(5, $10) = 𝛽𝛿5𝑢($10)

= 0.75 × 0.95 × 10

= 4.43

The discounted utility of the $20 in 10 days is:
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𝑈0(10, $20) = 𝛽𝛿10𝑢($20)

= 0.75 × 0.910 × 20

= 5.23

As 𝑈0(5, $10) = 4.43 < 5.23 = 𝑈0(10, $20), this present-biased agent will prefer
to receive $20 in 10 days.

Five days pass so we are now at 𝑡 = 5. We ask the agent if they would like to
change their mind.

The discounted utility of the $10 today is:

𝑈5(5, $10) = 𝑢($10)

= 10

The discounted utility of the $20 in five days is:

𝑈5(10, $20) = 𝛽𝛿5𝑢($20)

= 0.75 × 0.95 × 20

= 8.86

As 𝑈5(5, $10) = 10 > 8.86 = 𝑈5(10, $20), this present-biased agent will prefer
to receive $10 today. They have changed their preference between the two
payments relative to their decision at 𝑡 = 0.
We can see this change in preference in the following diagram.

The vertical bars represent the payments of $10 and $20. The lines projecting
back from the bars to the y-axis represent the discounted utility of each payment
at each time. There is a kink in the line in the period immediately before each
payment, representing the effect of the short-term discount factor 𝛽.
At 𝑡 = 0 (and through to 𝑡 = 4) the discounted utility of the $20 at 𝑡 = 10
is higher and that payment is therefore preferred. At 𝑡 = 5 when the $10 is
no longer discounted by the short-term discount factor 𝛽, it suddenly becomes
more attractive. If offered on that day, would be chosen in substitute of the $20
due in another five days.
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26.3 Paying a loan

Charlie is a naive present-biased agent with 𝛽 = 0.5, 𝛿 = 0.95 and 𝑢(𝑥) = 𝑥.
Charlie loaned $100 to Carol. Carol is due to pay Charlie back in 7 days (at
t=7). Carol tells Charlie that she would prefer to pay him back later, and offers
$200 in 14 days (at 𝑡 = 14) if he is willing to wait. Charlie is considering whether
to accept Carol’s offer.
(a) What does Charlie choose at 𝑡 = 0?
To determine what Charlie chooses at 𝑡 = 0, we need to compare the discounted
utility of the two options.
The discounted utility of $100 at 𝑡 = 7 is:

𝑈0(7, 100) = 0.5 × 0.957 × 100
= 34.92

The discounted utility of $200 at 𝑡 = 14 is:

𝑈0(14, 200) = 0.5 × 0.9514 × 200
= 48.77
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Charlie chooses the option with the highest discounted utility, which is $200 at
𝑡 = 14.
(b) At 𝑡 = 7 Charlie considers whether he should now demand payment of $100
at 𝑡 = 7 rather than wait for payment of $200 at 𝑡 = 14. What does Charlie
choose at 𝑡 = 7?
To determine what Charlie chooses at 𝑡 = 7, we need to compare the discounted
utility of the two options.

The discounted utility of $100 at 𝑡 = 7 is:

𝑈7(7, 100) = 0.950 × 100
= 100

The discounted utility of $200 at 𝑡 = 14 is:

𝑈7(14, 200) = 0.5 × 0.957 × 200
= 69.83

Charlie chooses the option with the highest discounted utility, which is $100 at
𝑡 = 7. He has changed his mind. This is because the sum at 𝑡 = 7 is no longer
subject to the short-term discount factor 𝛽.
(c) Draw a graph illustrating Charlie’s choices.

The following chart shows each of the two options presented to Charlie, $100 at
𝑡 = 7 and $200 at 𝑡 = 14. The line extended from each back to 𝑡 = 0 represents
the the discounted utility of each option at time 𝑡.
It can be seen that from 𝑡 = 0 to 𝑡 = 6, the discounted utility of $200 at 𝑡 = 14
is higher than the discounted utility of $100 at 𝑡 = 7. However, at 𝑡 = 7, the
discounted utility of $100 at 𝑡 = 7 is higher than the discounted utility of $200
at 𝑡 = 14. Hence Charlie changes his mind.
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Chapter 27

Sophisticated present bias

Suppose a present-biased agent decides that they will wait for a larger, later
payoff in preference to a smaller, sooner payoff. Time passes until the smaller
pay-off becomes immediately available. They change their mind and take the
smaller payoff. Why did the agent initially choose the larger payoff when they
would take the smaller payoff? Were they aware of the likely outcome of their
preferences? If they were aware, they might anticipate changing their mind and
choose accordingly.

For many of us, we are aware that we make time-inconsistent decisions. We
know that we often cave when faced with immediate temptation. We know that
if there is a jar of cookies in the house we will eat them.

27.1 Naïve and sophisticated present-biased
agents

To bring this idea of awareness about our present bias into our analysis, I am
going to distinguish between two types of present-biased agents: naive and
sophisticated.

Consider how a present-biased agent discounts a payoff for each successive period
of delay under the 𝛽𝛿 model. The first period of delay results in the application
of a total discount factor of 𝛽𝛿. Each additional period of delay results in the
application of an additional discount factor of 𝛿. The discount factor applied for
the first period of delay is relatively smaller - or the magnitude of the discount
relatively greater - than the additional discount applied for any additional period
of delay.

A naive present-biased agent believes that the relative difference in discount
between periods that they can see today will persist as time passes. That is,
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they believe that the discount factor of 𝛿 applied between, say, periods 𝑡 = 2
and 𝑡 = 3, will still be the relative discount when they reach 𝑡 = 2. However,
when 𝑡 = 2 does arrive, 𝑡 = 3 will be discounted by both the short-term discount
factor 𝛽 and the usual discount factor 𝛿, compared to no discount for the present
period 𝑡 = 2. As a result, the relative discount of different payoffs will change
when one of those payoffs becomes due today.

A sophisticated present-biased agent correctly believes that they will apply both
the short-term and usual discount factors in the future. As a result, they un-
derstand that the relative discount of different payoffs will change when one
of those payoffs becomes due today. They understand that if faced with the
temptation to take benefits or to delay costs, they will do so.

A sophisticated and naive person can make different decisions despite having
the same level of impatience, 𝛿, and the same level of present bias, 𝛽. Any
difference emerges in the way that they reason through an intertemporal choice.

The naive agent makes its plans by forward reasoning, starting from today
(𝑡 = 0).

1. First, they decide their preferred option for 𝑡 = 0, believing that they will
stick to their plan once they move to the next period.

2. When they move to the next period (𝑡 = 1) they recompute their preferred
plan, again believing they will stick to the plan once they move to the next
period.

3. They repeat this process as they move through time.

In contrast, the sophisticated present-biased agent makes its plans by backward
reasoning, starting from the final period (𝑡 = 𝑇 ).

1. For that final period, they solve for the preferred action.

2. They then consider one period earlier (𝑡 = 𝑇−1) and solve for the preferred
action, accounting for the decision in (1)

3. They repeat this process as they move back to today (𝑡 = 0).

27.2 Examples

The difference between naive and sophisticated present-biased agents is best
illustrated through examples.
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27.2.1 $100 next week or $110 in two weeks

For the first example, suppose we have a naive and a sophisticated present-biased
agent, each with 𝛽 = 0.95, 𝛿 = 0.95 and utility each period of 𝑢(𝑥𝑛) = 𝑥𝑛.

We offer them both the following choice.

Would you like $100 next week or $110 in two weeks?

We also tell them that we will allow them to reconsider their decision next week.

When the naive present-biased agent considers this problem, they simply com-
pare the discounted utility of each payoff from the perspective of today.

The discounted utility of the $100 next week is:

𝑈0(1, $100) = 𝛽𝑢(𝑥1)

= 𝛽𝛿𝑢($100)

= 0.95 × 0.95 × 100

= 90.25

The discounted utility of the $110 in two weeks is:

𝑈0(2, $110) = 𝛽𝛿2𝑢(𝑥2)

= 𝛽𝛿2𝑢($110)

= 0.95 × 0.952 × 110

= 94.31

As 𝑈0(1, $100) = 90.25 < 94.31 = 𝑈0(2, $110), at 𝑡 = 0 the present-biased agent
will prefer to receive $110 in two weeks.

But this choice does accord with the naive agent’s preferences next week. Next
week (at 𝑡 = 1) they will calculate utility of the $100 as:

𝑈1(1, $100) = 𝑢(𝑥1)

= 𝑢($100)

= 100
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The discounted utility of the $110 a week later is:

𝑈1(2, $110) = 𝛽𝛿𝑢(𝑥2)

= 𝛽𝛿𝑢($110)

= 0.95 × 0.95 × 110

= 99.275

As 𝑈1(1, $100) > 𝑈1(2, $110), the present-biased agent will prefer to receive
$100 immediately.

At 𝑡 = 0 their preference is inconsistent with what it will be next week at 𝑡 = 1.
The sophisticated present-biased agent will approach this decision differently.
They consider it using backward induction.

First, they will look at the choice they will face next week and calculate the
discounted utility of each option as they will calculate it at that time.

That is, they calculate the discounted utility of the $100 at 𝑡 = 1 from the
perspective of 𝑡 = 1.

𝑈1(1, $100) = 𝑢(𝑥1)

= 𝑢($100)

= 100

They then calculate the discounted utility of the $110 at 𝑡 = 2 from the per-
spective of 𝑡 = 1.

𝑈1(2, $110) = 𝛽𝛿𝑢(𝑥2)

= 𝛽𝛿𝑢($110)

= 0.95 × 0.95 × 110

= 99.275

As 𝑈1(1, $100) > 𝑈1(2, $110), the sophisticated agent sees that next week, at
𝑡 = 1 they will take the $100.

This is the same pair of calculations that the naive agent made at 𝑡 = 1. The
difference is that the sophisticated agent makes this calculation at 𝑡 = 0 from
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the perspective of 𝑡 = 1. The naive agent does not consider this perspective
until 𝑡 = 1.
After considering their preference at 𝑡 = 1, the sophisticated agent then con-
siders their choice at 𝑡 = 0. They see their future decision at 𝑡 = 1 and know
that $110 in two weeks is not available to them. The only option they have is
to choose $100 in one week. They effectively accept their future present bias
now and choose the $100 in two weeks.

In this example, being naive or sophisticated does not change their final choice.
It only changes their beliefs about their final decision over time. The sophis-
ticated agent knows at 𝑡 = 0 what they will do at 𝑡 = 1. The naive agent is
unaware that at 𝑡 = 1 they will make a decision inconsistent with their choice
at 𝑡 = 0. We can summarise their decisions at each time as follows:

Naive agent Sophisticated agent
𝑡 = 0 $110 at 𝑡 = 2 $100 at 𝑡 = 1
𝑡 = 1 $100 at 𝑡 = 1 $100 at 𝑡 = 1

27.2.2 Watching a movie

Suppose we have a naive and a sophisticated present-biased agent, each with
𝛽 = 0.5 and 𝛿 = 1. They are present-biased, but beyond that present bias
demonstrate no impatience.

We offer them the following choice.

• An OK movie today (𝑡 = 0) that gives utility of 6

• A good movie next week (𝑡 = 1) that gives utility of 10

• A great movie in two weeks (𝑡 = 2) that gives utility of 16

We also tell the agents that next week they will be offered an opportunity to
change their minds.

First, we consider the naive agent. They calculate utility from the perspective
of today.
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𝑈0(0,OK) = 𝑢(OK)
= 6

𝑈0(1, good) = 𝛽𝛿𝑢(good)
= 0.5 × 1 × 10
= 5

𝑈0(2, great) = 𝛽𝛿2𝑢(great)
= 0.5 × 12 × 16
= 8

As 𝑈0(2, great) > 𝑈0(0,OK) > 𝑈0(1, good), the naive agent will choose the
great movie in two weeks.
But what then happens when the naive agent is given the chance to change their
mind after one week?

𝑈1(1, good) = 𝑢(good)
= 10

𝑈1(2, great) = 𝛽𝛿𝑢(great)
= 0.5 × 1 × 16
= 8

As 𝑈1(1, good) > 𝑈1(2, great), the naive agent will change their mind and watch
the good movie immediately.
What of our sophisticated agent?
They will make their decision today based on correct beliefs about their future
preferences. To do this, they solve by backward induction. First, what will their
decision be next week?

𝑈1(1, good) = 𝑢(good)
= 10

𝑈1(2, great) = 𝛽𝛿𝑢(great)
= 0.5 × 1 × 16
= 8
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As 𝑈1(1, good) > 𝑈1(2, great), the sophisticated agent can see that they will
choose to watch the good movie immediately.

Knowing this is the case, the sophisticated agent now decides whether they
prefer the OK movie today or the good movie next week.

𝑈0(0,OK) = 𝑢(OK)
= 6

𝑈0(1, good) = 𝛽𝛿𝑢(good)
= 0.5 × 1 × 10
= 5

As 𝑈0(0,OK) > 𝑈0(1, good), the sophisticated agent prefers the OK movie
today.

From today’s perspective, the sophisticated agent would prefer the great movie
in two weeks, but as they know they will cave in to their present bias next week
and watch the good movie, they make today’s decision on that basis. They
know that if they select the great movie today they won’t watch it.

27.2.3 A library fine

A naive present-biased agent has failed to return their library books and is fined
at 𝑡 = 0. They can select one of the following payment schemes:

(0,−$10), (1,−$15) or (2,−$25)
That is, they can pay $10 today, $15 at 𝑡 = 1 or $25 at 𝑡 = 2.
They are free to change the scheme over time as they see fit.

The agent’s utility is linear in money - that is, 𝑢(𝑥𝑛) = 𝑥𝑛 - with discount
factors 𝛽 = 0.5 and 𝛿 = 1.
The naive agent calculates the utility of each option today.
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𝑈0(0,−$10) = 𝑢(−$10)
= −10

𝑈0(1,−$15) = 𝛽𝛿𝑢(−$15)
= 0.5 × 1 × (−15)
= −7.5

𝑈0(2,−$25) = 𝛽𝛿2𝑢(−$25)
= 0.5 × 12 × (−25)
= −12.5

As 𝑈0(1, −$15) > 𝑈0(0,−$10) > 𝑈0(2, −$25), the naive agent will choose to
pay $15 at 𝑡 = 1.
A week passes and the naive agent is now at 𝑡 = 1, the time when they were
planning to pay the fine. The naive agent reconsiders their decision.

𝑈1(1, −$15) = 𝑢(−$15)
= −15

𝑈1(2, −$25) = 𝛽𝛿𝑢(−$25)
= 0.5 × 1 × (−25)
= −12.5

As 𝑈1(2,−$25) = −12.5 >= −15 = 𝑈1(1,−$15), the naive agent changes their
decision and further delays their payment. They now choose to pay $25 at 𝑡 = 2.
When they reach 𝑡 = 2, they have no choice but to pay the $25.

A sophisticated present-biased agent has also failed to return their library books
and is fined at 𝑡 = 0. They can select one of the following payment schemes:

(0, −$10), (1,−$15) or (2,−$25)
They are free to change the scheme over time as they see fit.

The sophisticated agent’s utility is linear in money 𝑢(𝑥𝑛) = 𝑥𝑛, with discount
factors 𝛽 = 0.5 and 𝛿 = 1.
For the sophisticated agent, we start calculating utility from the final period.

At 𝑡 = 2, they have no choice but to pay the $25.
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What of 𝑡 = 1?

𝑈1(1, −$15) = 𝑢(−$15)
= −15

𝑈1(2, −$25) = 𝛽𝛿𝑢(−$25)
= 0.5 × 1 × (−25)
= −12.5

The sophisticated agent can see that if they choose at 𝑡 = 1, they will choose to
pay $25 at 𝑡 = 2.
Now we iterate at 𝑡 = 0. The sophisticated agent only compares $10 at 𝑡 = 0
with $25 at 𝑡 = 2 because they know that at 𝑡 = 1 they will select $25 at 𝑡 = 2.
They know that if they delay once they will delay again and end up paying the
largest fine. Hence they limit their comparison to those outcomes that might
occur:

𝑈0(0,−$10) = 𝑢(−$10)
= −10

𝑈0(2,−$25) = 𝛽𝛿2𝑢(−$25)
= 0.5 × 12 × (−25)
= −12.5

As 𝑈0(0,−$10) > 𝑈0(2,−$25), the sophisticated agent will choose to pay $10
at 𝑡 = 0.
In the examples, we have seen two contrasting outcomes for the sophisticated
agent.

In the movie example, they watch an OK movie today, rather than a good movie
in one week or a great movie in two, because they knew that they would watch
the good movie in one week if they delayed to watch the great movie. As a
result, they watched an earlier, worse movie than the naive agent.

In the library fine example, they paid the lowest possible fine as they saw they
would further delay paying the fine in the future, leading it to increase even
more.

The sophisticated agent’s behaviour arises from two tensions:

1. They understand that they will not be able to wait for the optimal time.
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2. They are present-biased so they prefer benefits today and costs delayed to
the future.

In combination, these imply a sophisticated agent will generally take action
earlier than the naive agent. They can “prepoperate”, which is doing something
now when it would be better to wait.
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Chapter 28

Commitment

A sophisticated present-biased agent can foresee their future actions and adjust
their decisions today based on their foresight.

This foresight provides an opportunity. By seeing their future selves fail, they
can commit themselves to a course of action today that they would not otherwise
be able to choose.

28.1 Commitment device

People often implement the opportunity to commit themselves to a course of
action by using a commitment device.

A commitment device is a mechanism that locks you into a course of action by
changing the value or availability of future options.

Commitment devices may work through the following channels:

• They may depress the value of the bad course of action.

• They may increase the value of the optimal course of action

• They may force the agent to maintain the optimal course of action.

28.2 Commitment examples

I will now illustrate those channels with examples.
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28.2.1 Forcing the optimal course of action

A sophisticated present-biased agent with 𝛽 = 0.5 and 𝛿 = 1 is choosing between
three movies, an OK movie, a good movie, and a great movie. The OK movie
would give utility of 6, the good movie would give utility of 10, and the great
movie would give utility of 16.

The problem is that only the OK movie is showing today (𝑡 = 0). The good
movie is showing next week (𝑡 = 1), and the great movie is showing in two weeks
(𝑡 = 2).
The agent has enough money and time to watch only one movie. Should they
watch the OK movie today or wait for the good or great movie?

To determine their action, they solve by backward induction.

First, what will their decision be next week?

𝑈1(1, good) = 𝑢(good)

= 10

𝑈1(2, great) = 𝛽𝛿𝑢(great)

= 0.5 × 1 × 16

= 8

As 𝑈1(1, good) > 𝑈1(2, great), the sophisticated agent can see that they will
choose to watch the good movie immediately.

Knowing this is the case, the sophisticated agent now decides whether they
prefer the OK movie today or the good movie next week.

𝑈0(0,OK) = 𝑢(OK)

= 6

𝑈0(1, good) = 𝛽𝛿𝑢(good)

= 0.5 × 1 × 10

= 5
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As 𝑈0(0,OK) > 𝑈0(1, good), the sophisticated agent prefers the OK movie
today.
But when they compare all three options at 𝑡 = 0, they would prefer the great
movie in two weeks.

𝑈0(2, great) = 𝛽𝛿2𝑢(great)

= 0.5 × 12 × 16

= 8

≥ 6 = 𝑈0(0,OK)

It is only because they can foresee their future failing after one week that they
don’t wait for the great movie.
But what if they could commit themselves today? For example, suppose they
could purchase a non-refundable, non-resalable ticket to the great movie in two
weeks. The result is that a sophisticated present-biased agent would buy a ticket
to the great movie in two weeks and prevent their future self from changing their
action.

28.2.2 Forcing the optimal course of action: Odysseus

Another example of forcing the agent to maintain the optimal course of action
is the story of Odysseus.
Odysseus was required to sail past the sirens at 𝑡 = 1. At that time he can
either jump off his ship to join the sirens (and die) or sail on past and live,
having a great life at 𝑡 = 2.
As Odysseus is a sophisticated present-biased agent, he considers what he is
likely to do at 𝑡 = 1. He realises that he will jump off the ship for the immediate
benefit of joining the sirens at the loss of the longer-term discounted benefit of
living.
But from the perspective of Odysseus today, at 𝑡 = 0, with both the benefits
of the sirens and living in the future and therefore discounted, Odysseus would
prefer to live. As a result, he decides to commit himself to that course of action
by instructing his crew to tie him to the mast (plus leaving his ears unplugged
so that he also gets some benefits from the siren song).

28.2.3 Forcing the optimal course of action: lay-by

Suppose a quasi-hyperbolic discounting agent with discount factors 𝛽 = 1/2
and 𝛿 = 1 wants a new jacket for work. They need to save for three months
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to purchase the jacket. But each month they save they forgo consumption that
would boost their utility.

They receive the following payoffs for each action:

t=0 t=1 t=2
Save 0 0 45
Spend 10 10 10

First, consider what a naive quasi-hyperbolic discounting agent chooses.

At 𝑡 = 0, they calculate the discounted utility of each option.

𝑈0(Save) = 0 + 𝛽𝛿 × 0 + 𝛽𝛿2 × 45

= 0.5 × 45

= 22.5

𝑈0(Spend) = 10 + 𝛽𝛿 × 10 + 𝛽𝛿2 × 10

= 10 + 0.5 × 10 + 0.5 × 10

= 20

At 𝑡 = 0, 𝑈0(Save) > 𝑈0(Spend). The agent plans to save for the jacket.

One month now passes. The agent has saved for a month. They could now
spend their savings from last month and this month, giving a short-term boost,
or keep saving for their jacket. The payoffs for each action are:

t=1 t=2
Save 0 45
Start spending at 𝑡 = 1 20 10

Again, the naive agent calculates the discounted utility of each option.
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𝑈1(Save) = 0 + 𝛽𝛿 × 45

= 0.5 × 45

= 22.5

𝑈1(Start spending at t=1) = 20 + 𝛽𝛿 × 10

= 20 + 0.5 × 10

= 25

At 𝑡 = 1 spending now has the highest discounted utility. After saving for the
first period, the agent spends despite initially wanting to save.
Now let’s consider this problem from the point of view of a sophisticated present-
biased agent. They see their full choice set as:

t=0 t=1 t=2
Save 0 0 45
Start spending at t=1 0 20 10
Spend 10 10 10

The sophisticated agent works backward through time. At 𝑡 = 2, if they have
saved, the agent will buy the jacket. Otherwise, the agent will spend.
The discounted utility of the options at 𝑡 = 1 is as follows:

𝑈1(Save) = 0 + 𝛽𝛿 × 45

= 0.5 × 45

= 22.5

𝑈1(Start spending at 𝑡 = 1) = 20 + 𝛽𝛿 × 10

= 20 + 0.5 × 10

= 25

As 𝑈1(Start spending at 𝑡 = 1) > 𝑈1(Save), the sophisticated agent would
spend.
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The sophisticated agent now knows that saving for the jacket is not available to
them as they will spend at 𝑡 = 1 regardless of their initial action. There was no
need to consider the option to start spending at 𝑡 = 0 as if they had spent then
there is no other choice at 𝑡 = 1.
The sophisticated agent now chooses between the two feasible options at 𝑡 = 0:

𝑈0(Start spending at 𝑡 = 1) = 0 + 𝛽𝛿 × 20 + 𝛽𝛿2 × 10

= 0.5 × 20 + 0.5 × 10

= 15

𝑈0(Spend) = 10 + 𝛽𝛿 × 10 + 𝛽𝛿2 × 10

= 10 + 0.5 × 10 + 0.5 × 10

= 20

As 𝑈0(Spend) < 𝑈0(Start spending at 𝑡 = 1), they start to spend at 𝑡 = 0.
Contrast this with the naïve agent who chooses Save at 𝑡 = 0.
Now consider what the sophisticated agent may do in the presence of lay-by.
Lay-by involves paying a deposit and administrative fee toward the purchase of
a product. You receive your purchase when you make payment in full later.

For payment of an administrative fee equivalent to 1 unit of utility and an
initial deposit (the agent’s savings in 𝑡 = 0), the agent can reserve the jacket,
preventing them from spending that money at 𝑡 = 2. The new set of options is:

t=0 t=1 t=2
Save 0 0 45
Start spending at t=1 0 20 10
Spend 10 10 10
Lay-by -1 0 45

The lay-by option is strictly worse than Save. But what happens if lay-by is
available to the sophisticated present-biased agent?

Again, working backward, at 𝑡 = 2, the agent buys the jacket if they have saved
and otherwise spends.

At 𝑡 = 1, by the same logic we looked at previously, they spend if they can do
so. That eliminates Save from their choice set.
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At 𝑡 = 0, they now compare the feasible options:

𝑈0(Start spending at 𝑡 = 1) = 0 + 𝛽𝛿 × 20 + 𝛽𝛿2 × 10

= 0.5 × 20 + 0.5 × 10

= 15

𝑈0(Spend) = 10 + 𝛽𝛿 × 10 + 𝛽𝛿2 × 10

= 10 + 0.5 × 10 + 0.5 × 10

= 20

𝑈0(Lay-by) = −1 + 𝛽𝛿 × 0 + 𝛽𝛿2 × 45

= −1 + 0.5 × 0 + 0.5 × 45

= 21.5

As 𝑈0(Lay-by) > 𝑈0(Spend) > 𝑈0(Start spending at 𝑡 = 1), lay-by is the pre-
ferred option at 𝑡 = 0. As it binds the agent in the future, they can stick to this
plan.
Note that lay-by is strictly worse than Save as the agent must pay the admin-
istrative fee. But the sophisticated quasi-hyperbolic discounting agent chooses
it as the only feasible way to get their jacket. Without lay-by they know they
will start spending at 𝑡 = 1 and end up with lower utility from the perspective
of their 𝑡 = 0 self.

28.2.4 Depressing the value of the bad course of action

stickK is a online platform that enables people to commit to future courses of
action. stickK works as follows:
First, you state a time-based goal, such as not smoking during the next month,
losing 5kg over the next 90 days, or writing the next chapter of your PhD thesis
by Christmas.
Second, you commit a stake that will be paid to a charity (or an anti-charity)
if you fail to meet your goal.
At the stated time, you then report (or a referee appointed by you reports)
whether you have met your goal. If you fail to report or report that you failed
to meet your goal, your credit card is debited by the staked amount.

200

https://www.stickk.com


I used stickK during my PhD. I regularly set deadlines for tasks and staked,
say, a payment of $500 to the National Rifle Association. If I didn’t complete
the task, I lost the money. Throughout the PhD, I met my benchmarks every
time except for one.

To understand how stickK works in the context of the 𝛽𝛿 model, consider a
sophisticated present-biased agent who is weighing the enjoyment they get from
smoking versus the long-term health effects.

This sophisticated present-biased agent has 𝛽 = 1/2 and 𝛿 = 1. They enjoy
smoking, which gives them utility of 5. However, the agent also likes being
healthy. Higher health gives utility of 8.

At 𝑡 = 0 the agent is deciding whether to smoke over the next month (𝑡 = 1).
If the agent doesn’t smoke, they will have better health at 𝑡 = 2.
The sophisticated agent works backward through time. At 𝑡 = 1 its payoffs are:

𝑈1(smoking) = 5

𝑈1(healthy) = 𝛽𝛿 × 8
= 4

The agent decides to smoke.

As a result, at 𝑡 = 0, knowing that it will cave at 𝑡 = 1, the agent doesn’t
bother committing to not smoking, even though from the perspective of 𝑡 = 0
refraining from smoking is the better option:
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𝑈0(smoking) = 𝛽𝛿 × 5

= 2.5

𝑈0(healthy) = 𝛽𝛿2 × 8

= 4

But now suppose the agent learns about stickK. The agent has the option of
staking a sum at 𝑡 = 0 to prevent it from smoking. The agent decides to stake
an amount equivalent to utility 5 that would be incurred at 𝑡 = 2.
Working backward through time, the agent knows that at 𝑡 = 1 if it has not
staked any money with stickK, it will smoke. But what if it has?

𝑈1(stickK+smoking) = 𝑢(smoking) + 𝛽𝛿 × 𝑢(lost stake)

= 5 + 𝛽𝛿 × (−5)

= 2.5

𝑈1(stickK+healthy) = 𝛽𝛿 × 𝑢(healthy)

= 𝛽𝛿 × 8

= 4

The agent would refrain from smoking at 𝑡 = 1 due to the penalty they would
have to pay.

This means the agent’s options at 𝑡 = 0 are effectively a comparison between
smoking and using stickK to commit to not smoking. The discounted utility of
each option is as follows.
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𝑈0(smoking) = 𝛽𝛿 × 𝑢(smoking)

= 𝛽𝛿 × 5

= 2.5

𝑈0(stickK+healthy) = 𝛽𝛿2 × 𝑢(healthy)

= 𝛽𝛿2 × 8

= 4

As 𝑈0(stickK+healthy) > 𝑈0(smoking), the agent chooses to commit using
stickK.
One interesting feature of these two options at 𝑡 = 0 is that the penalty does not
appear in either calculation of the discounted utility. We have already calculated
that if the penalty is present at 𝑡 = 1, the agent will not smoke. So when they
consider their options at 𝑡 = 1, there is no cost to committing.
For any problem of this form, the agent could always successfully use stickK to
commit to any action. The agent just needs to make the stake high enough.

28.2.5 Increasing the value of the optimal action: temp-
tation bundling

“Temptation bundling” involves increasing the value of the optimal course of
action by adding a temptation to that course.
Consider the following example.
Beth has the choice between exercising and watching television today at 𝑡 = 0.

• Beth does not enjoy exercise, which gives utility of 0. However, exercise
leads her to be healthy, giving utility of 12 in the future at 𝑡 = 1.

• Beth enjoys watching television, which gives utility of 6. However, watch-
ing television leads her to be unhealthy with utility of 0 in the future at
𝑡 = 1.

Beth is sophisticated and discounts the future quasi-hyperbolically. Beth’s 𝛽 =
1/2 and her 𝛿 = 2/3. Does Beth exercise?
Beth works through the options by backward induction. At 𝑡 = 1 there is no
choice to be made, as Beth simply enjoys the utility of the action she chose at
𝑡 = 0.
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For 𝑡 = 0 she calculates the discounted utility of each option as follows:

𝑈0(exercise) = 𝑢(exercise) + 𝛽𝛿𝑢(healthy)

= 0 + 1
2 × 2

3 × 12

= 4

𝑈0(television) = 𝑢(television) + 𝛽𝛿𝑢(unhealthy)

= 6 + 1
2 × 2

3 × 0

= 6

Beth chooses to watch television.

But what if Beth loved massages and remembers she has a massage voucher she
has been saving? What if she decides that if she exercises today, she will go for
a massage straight after? Let us assume that the utility of a massage is 3.

The discounted utility of exercising is now:

𝑈0(exercise+massage) = 𝑢(exercise) + 𝑢(massage)

+ 𝛽𝛿𝑢(healthy)

= 3 + 1
2 × 2

3 × 12

= 7

𝑈0(exercise+massage) > 𝑈0(television), so Beth now chooses to exercise.

This example is not strictly a commitment device as Beth could cheat. Beth
could watch television and get the massage. But people are often good at
creating “mental accounts” by which they make certain money or activities
out-of-bounds unless certain conditions are met.

28.2.6 Gym attendance

One empirical illustration of temptation bundling comes from an experiment to
increase gym attendance.
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Kirgios et al. (2020) found that teaching gym-goers how to temptation bundle
with a free audiobook boosts gym visits. Simply receiving a free audiobook
with no explicit instruction boosts exercise, implying that people who are given
audiobooks by gyms can infer they should temptation bundle. However, teach-
ing temptation bundling modestly outperforms simply giving gym-goers free
audiobooks.
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Chapter 29

Delayed gratification,
spread and variation

Recall the assumption of utility independence:

All that matters is maximising the sum of discounted utili-
ties. Decision-makers are assumed to have no preference for the
distribution of utilities.

However, there is evidence that people care about the shape of the utility stream
over time. There is evidence that people delay gratification, and prefer spread
and variation. They don’t care solely about maximising discounted utility.

This evidence suggests that the assumption of utility independence does not
hold. I will now discuss these three bodies of evidence.

29.1 Delayed gratification

The first concerns delayed gratification.

Consider the following example:

It is a sunny weekend. You can either study today and go to the
beach tomorrow, or you can go to the beach today and study tomor-
row.
Studying gives you a utility of 10. Going to the beach gives you a
utility of 20.
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What would an exponential discounter with 𝛿 = 0.8 do?
What would a present-biased agent with 𝛽 = 0.5 and 𝛿 = 0.8 do?
Both agents would go to the beach today and study tomorrow. They will always
schedule pleasant tasks before unpleasant tasks.
Does this match people’s observed behaviour?
There is considerable evidence that people will schedule unpleasant tasks first
and pleasant ones later. This might be thought of as a preference for an in-
creasing utility profile.
How could this be possible for someone who discounts the future?
One way is to ease the requirement that 𝛿 be less than one. This provides a
solution to the weekend problem but also leads to the potential of endlessly
postponing pleasant experiences.
Easing this requirement also clashes with other evidence that people often post-
pone unpleasant tasks and that people have a 𝛿 much less than one for many
decisions.

29.2 Spread of utility

Another body of evidence suggests that we prefer a spread of utility. We like to
distribute pleasant experiences over time.
In part, this emerges from diminishing marginal utility. Additional units of a
good or service on a day when we already have ample will provide less utility
than on a day when we have little.
However, some of the evidence cannot be accounted for by diminishing marginal
utility.
For example, suppose someone plans to catch up with one friend over lunch and
another at dinner. Some people prefer these two events on different days, giving
them a spread of utility over time.

29.3 Variation

We also have a preference for variation. Consider the following:

Your favourite meal is lasagna. Your second favourite meal is
spaghetti bolognese. Your third favourite is fish and chips.
You are offered the following two options:

1. Lasagna every night for the next week.
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2. Alternating meals of lasagna, spaghetti and fish and chips.

We don’t choose to have the same good or service over and over.
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Chapter 30

Intertemporal choice
applications

In this part, I discuss several applications of the intertemporal choice concepts
we have covered.

30.1 Savings

The first example relates to the use of commitment devices to increase savings.
Beshears et al. (2020) offered experimental participants the opportunity to
save in two accounts, one liquid and the other with liquidity constraints such as
withdrawal penalties. They found that the experimental participants put nearly
half of their money in the illiquid account even though it paid the same interest
rate. This behaviour contrasts with the standard economic prediction that all
money should go to the liquid account, which dominates the illiquid account’s
features. Even when the interest rate on the illiquid account was lower, it still
attracted around a quarter of the money.
This extract from Table 3 in the paper shows the proportion of funds allocated
to each type of “commitment account” when experimental participants had a
choice between an account with no liquidity constraints paying 22% interest and
the commitment account.
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You can see that where the interest rates between the liquid and illiquid accounts
were equal, the accounts with harsher constraints attracted more money. The
account with a higher withdrawal penalty (20% compared to 10%) attracted
more money, and the account that barred withdrawals attracted even more.

This result suggests a demand among sophisticated, present-biased agents for
products that will enable them to control their future behaviours.

This behaviour has also been observed outside the lab.

Ashraf et al. (2006) offered a commitment savings product called SEED (Save,
Earn, Enjoy Deposits) to randomly chosen clients of a Philippine bank. SEED
restricted access to savings for one year.

Other than providing a possible commitment savings device, no further benefit
accrued to individuals with this account.

Despite this, 28% of participants took up a commitment savings product. The
average savings balance increased by 42% after six months and 82% after one
year.

30.2 Smoking

The following example relates to quitting smoking.

Giné et al. (2010) tested a voluntary commitment product for smoking cessa-
tion.

Smokers were offered a product that comprised a savings account in which they
deposit funds. After six months, they took urine tests for nicotine and cotinine.

If they passed, the money was returned. Otherwise, it was forfeited.

The result was that 11% of smokers offered the product took it up. Smokers
offered the product were 3 percentage points more likely to pass the 6-month
test than the control group

The effect persisted in a surprise test at 12 months.

30.3 Organ donation

The next example concerns organ donation.

In European countries there are registers of people who will donate their organs
in case of death. There is a considerable gap in the percentage of registered
organ donors between countries. Why?
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Figure from E. J. Johnson and Goldstein (2003).

Yellow countries have an opt-in policy. People are required to register as an
organ donor.

Green countries have an opt-out policy known as presumed consent. Citizens
are presumed to consent unless they opt out (often through submission of a
form).

This outcome is a classic example of a default effect. Defaults are sticky. The
stickiness of defaults is typically assumed to come from loss aversion or present
bias.

Present bias might influence the decision as follows. There is an immediate cost
of changing from the default, be that time, effort or money. That cost is not
discounted. In contrast, the future benefit of their action is discounted.

If you asked these people about their future plans, they might say they intend
to change their organ donation registration. In the hypothetical, both the costs
and benefits and in the future. They believe they will switch later.

However, it is possible to argue that the stickiness of the defaults is due to a
rational cost-benefit calculation rather than loss aversion or present bias. The
cost of opting out is real, and people may not have a strong preference about
whether they are an organ donor.

Further, registration does not mean that your organs will be donated. Other
factors, such as family preference, affect donation. Among other things, the
absence of any active consent in situations of presumed consent means that the
family cannot take the organ donation register as an indication of the deceased’s
wishes. There is little benefit in changing the registration if it will have little
effect on the outcome you care about (actual organ donation).

211



E. J. Johnson and Goldstein (2003) argued that there is a positive relationship
between an opt-out policy and organ donations. But, it is much weaker than
the registration numbers would suggest and based on a simple regression that
likely does not capture all relevant variables.

There are alternatives to presumed consent that may increase organ donation
rates.

One alternative is using defaults more transparently with easy opt out. For
example, when obtaining your driver’s licence, there could be a section stating:
“Please tick this box if you do not wish to be registered as an organ donor”.
This measure would likely increase registration over the alternative of asking
people to tick the box if they wish to be an organ donor.

Another alternative is “active choice”, where citizens are required to indicate
whether or not they wish to be registered. This choice could also be built into
a form such as a driver’s licence application or renewal.

30.4 Save More Tomorrow

The next example of intertemporal choice relates to retirement savings.
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The Save More Tomorrow program, designed by Richard H. Thaler and Benartzi
(2004), combines prospect theory and time preference principles to increase
retirement savings.

Under Save More Tomorrow, customers are asked to commit in advance to
allocating a fraction of their future salary increases toward their retirement
savings accounts.

Save More Tomorrow is designed to reduce loss aversion when deciding contri-
bution amounts. A commitment of a proportion of a pay rise means that the
contribution can increase over time, but pay never decreases.

The program is designed to reduce the effect of present bias. The cost of the
savings is in the future, meaning that the costs are subject to the short-term
discount factor and not disproportionately overweighted relative to the benefits.

The program capitalises on participants’ propensity to stick with the status quo,
as people are unlikely to unwind their future commitments despite being able
to opt out at any time.

That ability to opt out also reduces regret and disappointment aversion.

The first tests of the Save More Tomorrow program by Richard H. Thaler and
Benartzi (2004) resulted in 78 per cent of those offered the plan joining, 80 per
cent of those remaining in the plan through the fourth pay rise, and average
savings rates increasing from 3.5 per cent to 13.6 per cent over 40 months. This
compares to much lower savings rates by those who declined advice, accepted
a recommended savings rate or took advice but declined to enrol in Save More
Tomorrow.

Figure 30.1 illustrates the results. Along the horizontal axis are the four groups:
those who declined to enrol in the program, those who declined to receive advice,
those who accepted a recommended savings rate, and those who accepted the
Save More Tomorrow program. The vertical axis shows the percentage of income
saved at each of five measurement points; before they received advice and after
the following four raises.

Note the savings rate is higher than the default rate in Australia. Could the
default in Australia create a low anchor for some people?

30.5 The Progress Saver Account

Another applied example of how we can use intertemporal choice in an applied
setting concerns ANZ bank’s progress saver account.

ANZ bank’s progress saver account pays bonus monthly interest on the condition
that a customer deposits at least $10 into the account and makes no withdrawals.
The bonus interest was 3.74% per year at the time of writing. If you fail to make
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Figure 30.1: Savings rates for SMarT

the minimum deposit or withdraw from the account, you are paid a nominal
interest rate of 0.01% per year on your savings for the month.

Many account holders do not receive bonus interest each month. Most notably,
while they often make deposits, they later withdraw funds, leading to the loss
of the bonus interest.

This behaviour may be evidence of a preference reversal due to present bias.
Today, the customer may have a preference for saving money for a long-term goal
rather than short-term spending at a closer date. But when that opportunity
for spending arrives, they prefer withdrawing from the account and spending
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the money now. That spending is no longer subject to the short-term discount
factor 𝛽, whereas the long-term savings goal and any interest toward achieving
it are.

For example, suppose a customer is deciding whether to save money for their
house deposit far in the future or spend the money on a new pair of shoes
when they go shopping next week. Both are in the future and are subject to a
short-term discount factor. In that circumstance, saving for the deposit might
be preferred. However, when the shopping day comes, the shoes can be bought
now. The shoes are not subject to the short-term discount factor and may give
higher discounted utility than the long-term savings goal. The customer then
withdraws the funds for the shoes, having changed their mind.

The behaviour could also be for rational reasons, such as a change in circum-
stances.

The bank has another product, a term deposit savings account, that pays, at
the time of writing, 0.15% interest if you commit your money for 12 months.
Many customers still use the term deposit despite paying much lower interest
than the progress saver account and constraining access to funds.

Why do people use this apparently sub-optimal product?

Some customers are what we call “sophisticated” present-biased agents. They
are present biased, but they know they are present biased. They can see their
future failings as they think through problems using backward induction. As
a result, they can implement strategies to restrain their future self, such as a
commitment device. A commitment device is a mechanism that locks you into
a course of action by changing the value or availability of future options.

If they foresaw spending their money on shoes, they would know that depositing
in the progress saver account would not lead to them saving for their house
deposit long term. As a result, that person may decide to forgo the possibility
of higher interest (that they won’t receive) to constrain their future self from
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buying shoes when shopping. The term deposit provides that constraint, acting
as a commitment device.
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Chapter 31

Intertemporal choice
exercises

31.1 Exercise or television?

Olga and Paul can choose one of the following options:

• Exercising at 𝑡 = 0 (utility = 0) and being healthy at 𝑡 = 1 (utility = 30).

• Watching television at 𝑡 = 0 (utility = 15) and being unhealthy at 𝑡 = 1
(utility = 0).

a) Olga discounts the future exponentially with 𝛿 = 2/3. At 𝑡 = 0, what is
Olga’s utility of exercising and watching television? What does Olga do?

Answer

𝑈0(𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒) = 𝑢(𝑥0) + 𝛿𝑢(𝑥1)

= 0 + 2
3 × 30

= 20

𝑈0(𝑡𝑒𝑙𝑒𝑣𝑖𝑠𝑖𝑜𝑛) = 𝑢(𝑥0) + 𝛿𝑢(𝑥1)

= 15 + 2
3 × 0

= 15
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Olga gets higher discounted utility from exercising, so chooses to exercise.

b) Paul discounts the future quasi-hyperbolically with 𝛽 = 3/4 and 𝛿 = 2/3. At
𝑡 = 0, what is Paul’s utility of exercising and watching television? What does
Paul do?

Answer

𝑈0(𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒) = 𝑢(𝑥0) + 𝛽𝛿𝑢(𝑥1)

= 0 + 3
4 × 2

3 × 30
= 15

𝑈0(𝑡𝑒𝑙𝑒𝑣𝑖𝑠𝑖𝑜𝑛) = 𝑢(𝑥0) + 𝛽𝛿𝑢(𝑥1)

= 6 + 3
4 × 2

3 × 0
= 15

Paul is indifferent between the two options, so could choose either.

31.2 Today or tomorrow?

Terry and Andy are given the choice between the following three options:

• A (utility of 3 at 𝑡 = 0)
• B (utility of 4 at 𝑡 = 1)
• C (utility of 5 at 𝑡 = 2).

a) Suppose that Terry discounts the future exponentially with 0 < 𝛿 < 1. He is
indifferent between A and B at 𝑡 = 0. What does this tell you about Terry’s 𝛿?

Answer

The utility of A and B must be equal.
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𝑈0(𝐴) = 𝑈0(𝐵)

3 = 𝛿4

𝛿 = 3
4

b) Andy discounts the future quasi-hyperbolically with 0 < 𝛽 < 1 and 0 < 𝛿 < 1.
At 𝑡 = 0, Andy is indifferent between A and B. What does this tell you about
Andy’s 𝛽 and 𝛿?

Answer

The utility of A and B must be equal.

𝑈0(𝐴) = 𝑈0(𝐵)

3 = 𝛽𝛿4

𝛽𝛿 = 3
4

We cannot determine anything else about the two as the discounting be-
tween 𝑡 = 0 and 𝑡 = 1 is a function of both the short-term and exponential
discount factor.

c) At 𝑡 = 0, Andy is indifferent between B and C. What does this tell you about
Andy’s 𝛽 and 𝛿?

Answer

The utility of B and C must be equal.

𝑈0(𝐵) = 𝑈0(𝐶)

𝛽𝛿4 = 𝛽𝛿25

4 = 𝛿5

𝛿 = 4
5

d) Combining the results of (b) and (c), compute Andy’s 𝛽 and 𝛿?
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Answer

We have already computed:

(1) 𝛿 = 4
5 .

We also know:

(2) 𝛽𝛿 = 3
4

Accordingly, substituting (1) into (2):

𝛽4
5 = 3

4
𝛽 = 15

16

31.3 Today or tonight?

Kate and Jack have utility function 𝑢(𝑥) = 𝑥 and can choose one of $3 now
(𝑡 = 0), $4 this afternoon (at 𝑡 = 1), or $7 tonight (𝑡 = 2).
a) Kate is an exponential discounter with 𝑑𝑒𝑙𝑡𝑎 = 1

2 . What does she choose?

Answer

We calculate discounted utility of each option and choose the highest.

𝑈0($3) = 3

𝑈0($4) = 𝛿 × 4
= 2

𝑈0($7) = 𝛿2 × 7

= 7
4

Kate chooses the $3 now.

b) Jack is a hyperbolic discounter with 𝛽 = 1
2 and 𝑑𝑒𝑙𝑡𝑎 = 1 what does Jack

choose?
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Answer

You calculate discounted utility of each option and choose the highest.

𝑈0($3) = 3

𝑈0($4) = 𝛽𝛿 × 4

= 1
2 × 1 × 4

= 2

𝑈0($7) = 𝛽𝛿2 × 7

= 1
2 × 12 × 7

= 3.5

Jack chooses the $7 tonight.
Although Jack is a hyperbolic discounter, the short-term discount factor
is only applied once.

c) This afternoon (𝑡 = 1) comes and Jack reconsiders his decision. Should he
take $4 this afternoon (𝑡 = 1), or $7 tonight (𝑡 = 2). What does Jack decide?

Answer

We calculate discounted utility of each option and choose the highest.

𝑈1($4) = 4

𝑈1($7) = 𝛽𝛿 × 7

= 1
2 × 1 × 7

= 3.5

Jack changes his mind and takes the $4 immediately.

d) Why did or did not Jack change his mind?

Answer

At 𝑡 = 0 the difference in discount between the $4 at 𝑡 = 1 and $7 at
𝑡 = 2 is 𝛿. Both are discounted by 𝛽 as neither is immediately available.
However, at 𝑡 = 0 the difference in discount between the $4 and $7 is 𝛽𝛿.
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The $4 is no longer subject to the immediate discount of 𝛽, making it
relatively more attractive.

e) Show the answers to parts a) to d) using a diagram.

Answer

The below figure shows the each of the payoffs that Kate could receive
at 𝑡 = 0, 1, 2. The lines represent the discounted utility of each option at
each time.
At 𝑡 = 0 we can see that the $3 immediately gives higher discounter utility
than both of the larger, later options.

The below figure shows the each of the payoffs that Jack could receive at
𝑡 = 0, 1, 2. The lines represent the discounted utility of each option at
each time.
At 𝑡 = 0 we can see that the $4 paid at 𝑡 = 1 gives higher discounter
utility. We can also see that the lines represented the discounted utility
at each time cross, giving the potential for a time inconsistent decision.

In the next figure we move forward to 𝑡 = 1. Jack’s preferred option
changes. He now prefers the $4 immediately. It is no longer discounted
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by 𝛽.

31.4 Small reward now or large reward later?

a) Alfred and Blake are exponential discounters. They can choose between a
small reward now or a larger reward later. Alfred discounts the future heavily
(low 𝛿). Blake does not (𝛿 close to one).

How might Alfred and Blake’s choices be affected by their discount factor?

Answer

Each will discount the two rewards, with the size of the discount for the
larger reward reflecting the size of the delay relative to the delay for the
small reward.
Alfred and Blake will prefer to wait if the discounted utility of the larger
reward is higher than that of the small reward.
As Alfred has a higher discount rate, Alfred is more likely than Blake to
prefer the small reward as Alfred will discount the larger reward by more.

b) Catherine is a quasi-hyperbolic discounter. She can choose between the same
two rewards. Before either award is available, she prefers the large reward.
However, she changes her mind and chooses when the small reward at the time
it becomes available.

Why did Catherine change her mind?

Answer

If Catherine prefers the large reward, this means the discounted utility of
the larger reward is higher than that for the small reward. As both rewards
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are experienced with delay, the small and large reward are discounted
by the short-term discount factor, plus the exponential discount factor
proportional to the delay.
When the small reward becomes available, Catherine no longer applies any
discount to the small reward. The exponential discount factor applied to
the larger reward also decreases for the time that has passed. Despite the
size of the exponential discount being applied to each reward decreasing
by the same amount, the removal of the short-term discount factor from
the small reward must have been of sufficient that it now has the larger
expected utility.

31.5 Credit score

A credit score is a score developed by credit agencies and lenders as a measure
of how risky a borrower is. The score is derived using data on past behaviour.
A person with a higher credit score is considered more likely to repay a loan on
time.

Researchers found a correlation between people’s discount factors, 𝛽 and 𝛿, and
their credit score.

What would this correlation be? Explain why you might see this relationship.

Answer

You would expect to see a positive correlation between the credit score
and the discount factors.
𝛽 relates to present-bias, which results in greater weight being given to
any costs or benefits today relative to costs and benefits experienced with
delay.
𝛿 relates to impatience, with each successive period of delay being subject
to a discount relative to the previous.
Both discount factors could affect the credit score.
To the extent the future is discounted due to either discount rate, this
makes borrowing more attractive provided the interest costs are not too
high.
If either discount factor were low enough, an agent might be willing to bor-
row more than they could feasibly pay off in the future (or at extortionate
interest rates). The benefits of consumption today might exceed the costs
of failure to repay, with those costs sufficiently discounted that them agent
is willing to incur them. An agent with low 𝛽 might be particularly vul-
nerable to this as an impulsive purchase today might be attractive even
though the debt (e.g. credit card) might be payable soon. Failure to pay
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would hurt their credit score.
Unintended payment problems are more likely to be caused by low 𝛽.
If someone with low 𝛿 borrowed money with the intention to pay it off in
the future, they would stick to that plan. They are time consistent.
Someone with low 𝛽 may borrow with the intention to pay it off. However,
when the day of payment arrives, they may change their mind and prefer
not to incur the immediate cost of payment as that exceeds the discounted
costs in the future (such as penalty interest and a low credit score). This
would also hurt their credit score.

31.6 Time inconsistent preferences

Recall the question in Section 31.3.

We found that at 𝑡 = 0 Jack planned to wait until tonight (𝑡 = 2) for the $7,
but in the afternoon (𝑡 = 1) he changed his mind and took the $4 that was
available immediately.

Jack’s friend Allan is a sophisticated quasi-hyperbolic discounter with 𝛽 = 1
2

and 𝛿 = 1.
Does your answer change for Allan? Why?

Answer

The behaviour of Jack that we observed in Tutorial 5 was that of a naive
hyperbolic discounter. In each period he calculated his preferred option
and acted as though he would stick to that decision in the future. He did
not anticipate changing his mind at 𝑡 = 1.
Allan considers the choice by using backward induction from the final
period.
If Allan waits until tonight, he takes the $7 with certainty.
Now considering his choice at 𝑡 = 1.

𝑈1($4 at 𝑡 = 1) = 4
𝑈1($7 at 𝑡 = 2) = 𝛽𝛿 × 7

= 3.5

At 𝑡 = 1 Allan can see that he will cave in take the $4.
Allan now considers 𝑡 = 0 with the knowledge he will take the $4 at 𝑡 = 1.
He knows that he will not make it to the $7 at 𝑡 = 2, so he removes it
from his choice set.
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𝑈0($3 at 𝑡 = 0) = 3
𝑈0($4 at 𝑡 = 1) = 𝛽𝛿 × 4

= 2

At 𝑡 = 0 Allan chooses the $3. His sophistication leads him to preproper-
ate. He takes a lower amount earlier than the naive Jack.

31.7 Eating cake

Kelvin and Linda both like chocolate cake. There are two periods in which they
can eat cake, 𝑡 = 1, 2. They receive an immediate benefit of 12 for eating cake
at 𝑡 = 1 and 6 for eating cake at 𝑡 = 2
At 𝑡 = 3 they incur the costs of their diet and pay a cost of 8. The total cost
depends on how much cake they eat.
Kelvin and Linda have preferences of 𝛽 = 0.5 and 𝛿 = 1.
To illustrate, if Kelvin or Linda eat at 𝑡 = 1 they receive a benefit of 12 at 𝑡 = 1
and a cost of 8 at 𝑡 = 3. If Kelvin or Linda eat at both at 𝑡 = 1 and at 𝑡 = 2,
they receive a benefit of 12 at 𝑡 = 1 and 6 at 𝑡 = 2 and a cost of 16 at 𝑡 = 3.
Kelvin is naive, Linda is sophisticated.
a) When will Kelvin eat?

Answer

We can calculate utility of eating in each round separately as the utilities
are additive.
At 𝑡 = 0:

𝑈0(eat at 𝑡 = 1) = 𝛽𝛿 × 12 − 𝛽𝛿3 × 8
= 0.5 × 1 × 12 − 0.5 × 13 × 8
= 2

𝑈0(eat at 𝑡 = 2) = 𝛽𝛿2 × 6 − 𝛽𝛿3 × 8
= 0.5 × 12 × 6 − 0.5 × 13 × 8
= −1

Kelvin plans to eat at 𝑡 = 1 but not 𝑡 = 2.
At 𝑡 = 1:
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𝑈1(eat at 𝑡 = 1) = 12 − 𝛽𝛿2 × 8
= 12 − 0.5 × 12 × 8
= 8

𝑈1(eat at 𝑡 = 2) = 𝛽𝛿 × 6 − 𝛽𝛿2 × 8
= 0.5 × 1 × 6 − 0.5 × 1 × 8
= −1

Kelvin eats at 𝑡 = 1 but does not plan to eat at 𝑡 = 2.
At 𝑡 = 2:

𝑈2(eat at 𝑡 = 2) = 6 − 𝛽𝛿2 × 8
= 6 − 0.5 × 12 × 8
= 2

Kelvin eats at 𝑡 = 2.
Kelvin, being naive, thinks he will stick to his initial plan of eating at
𝑡 = 1 but not at 𝑡 = 2, but ends up eating in both periods.

b) When will Linda eat?

Answer

Linda is sophisticated and solves their problem backward.
There is no decision to make at 𝑡 = 3. She simply incurs the cost of their
past behaviour.
At 𝑡 = 2:

𝑈2(eat at 𝑡 = 2) = 6 − 𝛽𝛿2 × 8
= 6 − 0.5 × 12 × 8
= 2

Linda anticipates that she will eat at 𝑡 = 2.
Linda knows she will eat at 𝑡 = 2, so she don’t need to reconsider her plan
for then at 𝑡 = 1.
At 𝑡 = 1

227



𝑈1(eat at 𝑡 = 1) = 12 − 𝛽𝛿2 × 8
= 12 − 0.5 × 12 × 8
= 8

Linda also anticipates that she will eat at 𝑡 = 1.
At 𝑡 = 0, Linda can now see that she will eat at 𝑡 = 1 and 𝑡 = 2 no matter
what she decides now. She simply accepts her future course of action.

c) Assume that Kelvin and Linda can pay price 𝑝 at 𝑡 = 0 for a binding com-
mitment device that prevents them from eating more than they initially plan.
Assuming costs and benefits are measured in dollars, what is the maximum price
𝑝 that Linda would pay to use the commitment device?

Answer

From the perspective of period 𝑡 = 0 all costs and benefits are discounted.
At 𝑡 = 0:

𝑈0(eat at 𝑡 = 1) = 𝛽𝛿 × 12 − 𝛽𝛿3 × 8
= 0.5 × 1 × 12 − 0.5 × 13 × 8
= 2

𝑈0(eat at 𝑡 = 2) = 𝛽𝛿2 × 12 − 𝛽𝛿3 × 8
= 0.5 × 12 × 6 − 0.5 × 13 × 8
= −1

From the perspective of 𝑡 = 0, eating at 𝑡 = 2 has negative discounted
utility. As a result, if a commitment device available, Linda would use it
to commit to not eating at 𝑡 = 2. The commitment device would prevent
a loss of 1. Therefore, Linda would pay up to 𝑝 = $1.

d) What happens to Kelvin, a naive agent, in the presence of the commitment
device?

Answer

Being naive, Kelvin does not perceive the necessity of using a commitment
device as he trusts he will comply with his plans.
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31.8 Completing an assignment

Your assignment is due today at 𝑡 = 0.
You can complete the assignment within a day, but on that day you will incur
a utility cost of 10.
For every day you submit late, you lose one mark. You experience a utility cost
of 1 for every mark lost on the day it is lost. If handed in more than 6 days
late, you will fail and experience utility cost of 1000. (In other words, if you
haven’t yet submitted, you will definitely submit at 𝑡 = 6).
This leaves you with a decision to hand in at 𝑡 = 0, 𝑡 = 1, 𝑡 = 2, ..., 𝑡 = 5, or
𝑡 = 6.
For instance:

• If you submit today, at 𝑡 = 0, you experience utility cost of 10.
• If you submit tomorrow, at 𝑡 = 1, you will experience utility cost of 10

plus a utility cost of 1 for the mark lost on that day.
• If you submit at 𝑡 = 2, you will experience a utility cost of 1 at 𝑡 = 1 for

the mark lost, a utility cost of 1 at 𝑡 = 2 for another mark lost, and a
utility cost of 10 for completing the assignment.

• If you submit at 𝑡 = 6, you will experience a utility cost of 1 on each day
from 𝑡 = 1 to 𝑡 = 6 for the marks lost, plus a utility cost of 10 at 𝑡 = 6 for
completing the assignment.

You are a hyperbolic discounter with 𝛽 = 0.75 and 𝛿 = 1.
a) When do you finish if you are naive?

Answer

At 𝑡 = 0 you have 7 possible plans to consider: finishing your assignment
at 𝑡 = 0 through to 𝑡 = 6. You compare the discounted utilities from the
various plans as follows.
At 𝑡 = 0:

• Finish today (𝑡 = 0): −10
• Finish tomorrow (𝑡 = 1): 0.75(−10 − 1) = −8.50
• Finish at 𝑡 = 2: 0.75(−10 − 2) = −9.25
• Finish at 𝑡 = 3: 0.75(−10 − 3) = −10
• …
• Finish at 𝑡 = 6: 0.75(−10 − 6) = −12

At 𝑡 = 0, you plan to finish at 𝑡 = 1 as that yields the highest discounted
utility. You put off finishing the assignment until tomorrow.
At 𝑡 = 1 you then reconsider your decision. The penalty received at 𝑡 = 1
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is now sunk and won’t affect the decision:

• Finish today (𝑡 = 1): −10 = −10
• Finish tomorrow (𝑡 = 2): 0.75(−10 − 1) = −8.25
• Finish at 𝑡 = 3: 0.75(−10 − 2) = −9
• …
• Finish at 𝑡 = 6: 0.75(−10 − 5) = −11.25

At 𝑡 = 1, you change your plan and now intend to finish at 𝑡 = 2, which
yields the highest discounted utility.
This pattern continues day after day, always intending to complete to-
morrow, until 𝑡 = 6, with an ultimate outcome of -10 utility cost on that
day, plus -1 utility cost each day for the last 6 days.

• Finish at 𝑡 = 5: −10
• Finish at 𝑡 = 6: 0.75(−10 − 1) = −8.25

b) When do you finish if you are sophisticated?

Answer

If you are sophisticated, you will start at the end and work backwards.
At 𝑡 = 6, you know that if you haven’t finished the assignment you must,
with -10 utility.
At 𝑡 = 5, you choose between:

• Finish at 𝑡 = 5: −10
• Finish at 𝑡 = 6: 0.75(−10 − 1) = −8.25

You do not plan to do the assignment at 𝑡 = 5 and you remove 𝑡 = 5 from
your plans.
At 𝑡 = 4, you choose between:

• Finish at 𝑡 = 4: −10
• Finish at 𝑡 = 6: 0.75(−10 − 2) = −9

You do not plan to do the assignment at 𝑡 = 4 and you remove 𝑡 = 4 from
your plans.
At 𝑡 = 3, you choose between:

• Finish at 𝑡 = 3: −10
• Finish at 𝑡 = 6: 0.75(−10 − 3) = −9.75

You do not plan to do the assignment at 𝑡 = 3 and you remove 𝑡 = 3 from
your plans.
At 𝑡 = 2, you choose between:
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• Finish at 𝑡 = 2: −10
• Finish at 𝑡 = 6: 0.75(−10 − 4) = −10.5

Utility is higher completing the assignment earlier. You plan to do the
assignment at 𝑡 = 2 and you remove 𝑡 = 6 from your plans.
At 𝑡 = 1, you choose between:

• Finish at 𝑡 = 1: −10
• Finish at 𝑡 = 2: 0.75(−10 − 1) = −8.25

You plan to do the assignment at 𝑡 = 2 and you remove 𝑡 = 1 from your
plans.
At 𝑡 = 0, you choose between:

• Finish at 𝑡 = 0: −10
• Finish at 𝑡 = 2: 0.75(−10 − 2) = −9

You will not change your intentions further and will complete the assign-
ment at 𝑡 = 2.

31.9 Saving for retirement

Citizens of Perthia have the choice between the following options:

• Saving for retirement at 𝑡 = 1 (𝑢1 = 0) and having a comfortable retire-
ment at 𝑡 = 2 (𝑢2 = 20)

• Spending at 𝑡 = 1 (𝑢1 = 10) and having a difficult retirement at 𝑡 = 2
(𝑢2 = 0).

a) Ellie is an exponential discounter with 𝛿 = 3/4. What does Ellie choose at
𝑡 = 0 and 𝑡 = 1? Why?
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Answer

𝑈0(𝑠𝑎𝑣𝑒) = 𝛿𝑢1 + 𝛿2𝑢2

= 0 + (3
4)

2
× 20

= 11.25

𝑈0(𝑠𝑝𝑒𝑛𝑑) = 𝛿𝑢1 + 𝛿2𝑢2

= 3
4 × 10 + 0

= 7.5

𝑈1(𝑠𝑎𝑣𝑒) = 𝑢1 + 𝛿𝑢2

= 0 + 3
4 × 20

= 15

𝑈1(𝑠𝑝𝑒𝑛𝑑) = 𝑢1 + 𝛿𝑢2
= 10 + 0
= 10

Ellie intends to save in both periods and does so. Ellie is time consistent.
Knowing that Ellie is an exponential discounter, we did not need to cal-
culate her decision at both 𝑡 = 0 and 𝑡 = 1. As exponential discounters
are time consistent, we could have simply determined her decision for one
period and known that would also be her decision at other times.

b) Freddie is a naive quasi-hyperbolic discounter with 𝛽 = 1/4 and 𝛿 = 1. What
does Freddie choose at 𝑡 = 0 and 𝑡 = 1? Why?
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Answer

𝑈0(𝑠𝑎𝑣𝑒) = 𝛽𝛿𝑢1 + 𝛽𝛿2𝑢2

= 0 + 1
4 × (1)2 × 20

= 5

𝑈0(𝑠𝑝𝑒𝑛𝑑) = 𝛽𝛿𝑢1 + 𝛽𝛿2𝑢2

= 1
4 × 1 × 10 + 0

= 2.5

At 𝑡 = 0 Freddie plans to save.

𝑈1(𝑠𝑎𝑣𝑒) = 𝑢1 + 𝛽𝛿𝑢2

= 0 + 1
4 × 1 × 20

= 5

𝑈1(𝑠𝑝𝑒𝑛𝑑) = 𝑢1 + 𝛽𝛿𝑢2
= 10 + 0
= 10

At 𝑡 = 1 Freddie chooses to spend Freddie has changed his mind. He is
time inconsistent. At 𝑡 = 0 both saving and spending are subject to the
short-term discount factor 𝛽, with the relative discount between saving
and spending being only 𝛿. However, at 𝑡 = 1 the benefit of spending is
available immediately and no longer discounted by 𝛽.

c) Grant is a sophisticated quasi-hyperbolic discounter with 𝛽 = 1/4 and 𝛿 = 1.
What does Grant do? Why?

Answer

Grant works through his options using backward induction.
At 𝑡 = 2 Grant has no decision to make.
At 𝑡 = 1:
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𝑈1(𝑠𝑎𝑣𝑒) = 𝑢1 + 𝛽𝛿𝑢2

= 0 + 1
4 × 1 × 20

= 5

𝑈1(𝑠𝑝𝑒𝑛𝑑) = 𝑢1 + 𝛽𝛿𝑢2
= 10 + 0
= 10

At 𝑡 = 1 Grant will spend. (This is the same calculation we made for
Freddie at 𝑡 = 1.)
As Grant knows he will spend at 𝑡 = 1, that is the only feasible option
available at 𝑡 = 0. Grant will choose to spend.
Ultimately, Grant takes the same action as Freddie. However, he can see
his future decisions and is aware of that coming failure to stick with what
would be his preferences at 𝑡 = 0.

d) Grant is offered the opportunity to bind himself to a course of action at 𝑡 = 0
at the cost of 1 point of utility at 𝑡 = 2. What does Grant do?

Answer

In the presence of the commitment device, Grant now has two feasible
options to consider at 𝑡 = 0.

𝑈0(𝑐𝑜𝑚𝑚𝑖𝑡) = 𝛽𝛿𝑢1 + 𝛽𝛿2𝑢2

= 0 + 1
4 × (1)2 × (20 − 1)

= 4.75

𝑈0(𝑠𝑝𝑒𝑛𝑑) = 𝛽𝛿𝑢1 + 𝛽𝛿2𝑢2

= 1
4 × 1 × 10 + 0

= 2.5

Grant now chooses to commit at a price of one unit of utility at 𝑡 = 2.
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31.10 Work or party?

Ruby is a sophisticated present-biased agent with 𝛽 = 0.5 and 𝛿 = 1. She has
utility function 𝑢(𝑥) = 𝑥.
Ruby is deciding today (𝑡 = 0) whether she will either:

• work tomorrow (𝑡 = 1) for $10 income to be received the day after she
works (𝑡 = 2) or

• party tomorrow (𝑡 = 1) for immediate utility of 8 but no income.

That is, she is deciding between (2, 10) and (1,8).
a) What does Ruby decide?

Answer

Ruby is sophisticated, so uses backward induction to decide her preferred
course of action.
At 𝑡 = 2 there is no decision to make. Ruby bears the consequences of her
earlier decisions.
At 𝑡 = 1 she compares the discounted utility of the two options:

𝑈1(work) = 𝛽𝛿𝑢(work)
= 0.5 × 1 × 10
= 5

𝑈1(party) = 𝑢(party)
= 8

At 𝑡 = 1 the discounted utility partying is higher than that of working
(𝑈1(party) > 𝑈1(work)), so Penny prefers to party.
At 𝑡 = 0 Penny knows that she will party at 𝑡 = 1 no matter what she
decides at 𝑡 = 0, so she accepts that she will party.

b) Ruby is able to commit to working at 𝑡 = 1 by posting a letter at 𝑡 = 0
declining the party invitation (at no cost). Once she sends the letter, she cannot
change her mind. Will she decline the invitation?

Answer

The presence of the commitment device allows Ruby to include the option
of working when she makes a decision at 𝑡 = 0. She will now compare
the discounted utility of using the commitment device with the discounted
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utility of working.

𝑈0(commit+work) = 𝛽𝛿2𝑢(commit+work)
= 0.5 × 12 × 10
= 5

𝑈0(party) = 𝛽𝛿𝑢(party)
= 0.5 × 1 × 8
= 4

𝑈0(commit+work) > 𝑈0(party), so Ruby commits to working by declining
the invitation.

c) Suppose declining the party invitation comes at a cost to Ruby’s reputation
at 𝑡 = 2. What is the largest utility cost that Ruby would be willing to incur
such that she would still use the commitment device of declining the invitation?

Answer

The largest cost she would be willing to incur is the cost where the dis-
counted utility of each option is equal. Setting the cost as 𝑐:

𝑈0(commit) = 𝛽𝛿2𝑢(work − 𝑐)
= 0.5 × 12 × (10 − 𝑐)
= 5 − 0.5𝑐

𝑈0(party) = 𝛽𝛿𝑢(party)
= 0.5 × 1 × 8
= 4

Ruby will be indifferent where 5 − 0.5𝑐 = 4 or where 𝑐 = 2. The largest
utility cost she would be willing to incur is 2.

d) Victoria is a naive present-biased agent with 𝛽 = 0.5 and 𝛿 = 1. She has
utility function 𝑢(𝑥) = 𝑥.
Victoria faces the same choice as Ruby and also has the chance to decline at
𝑡 = 0 the party invitation at a cost to Victoria’s reputation at 𝑡 = 2. Will
Victoria decline the invitation?
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Answer

As Victoria has the same discount function as Ruby, we know from ques-
tion b) that Victoria will decide to work at 𝑡 = 0. We also know from
question a) that she will then change her mind and party at 𝑡 = 1.
However, as Victoria is naive she does not see her future self-control prob-
lem and does not have the foresight to realise at 𝑡 = 0 that she will not
work as planned. As a result, she would see no need in the commitment
device and would not be willing to incur any cost to use it.

31.11 Buy-now pay-later

Buy-now pay-later works as follows: a person purchases an item with an initial
payment of one-quarter of the purchase price. They get access to the purchased
item immediately. They then pay three equal instalments each fortnight until
they have paid for the purchase in full. If they fail to make a payment on time,
they are required to pay a fee of $10 and are barred from using the buy-now
pay-later facility in the future.
Vernon used a buy-now pay-later provider to purchase a new jacket for $200.
He paid $50 on the day of the purchase and is now required to pay the next $50
instalment in two weeks. That is, Vernon’s schedule of costs and benefits is:

• Purchase date: Gains jacket and pays $50
• In two weeks: Pays $50
• In four weeks: Pays $50
• In six weeks: Pays $50

At that time of the purchase Vernon intends to pay for the jacket as required
by the buy-now pay-later provider in two, four and six weeks.
Two weeks after the purchase when his payment became due Vernon changed
his mind and did not make the payment. He purchased a carton of beer for a
party that night with the money instead. Vernon’s options and the cost and
benefits of those options had not changed since the purchase date.
Is Vernon an exponential discounter or present-biased? Why? Explain why
Vernon changed his mind.

Answer

As Vernon has exhibited time inconsistent behaviour, he must be present-
biased. An exponential discounter would be time consistent.
A present-based person subjects costs and benefits experienced with any
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delay to a short-term discount factor.
When Vernon purchased the jacket, the benefit of the jacket and the cost
of $50 would not have been subject to any discount. The cost of the three
future payments (or the benefit of alternative uses of that money such as
purchasing beer) would be subject to the short-term discount. Any fee for
failing to make a payment and the loss of the buy-now pay-later facility
for that failure would also be subject to that short-term discount factor.
When the next payment is due, the cost of that payment (or the benefit of
the beer) is no longer subject to the short-term discount factor, whereas
any fee from failing to make the payment and the loss of the facility are
still subject to that short-term discount factor. As a result, cost of the
payment / benefit of the beer now has relatively greater weight than the
future costs, leading Vernon to change his mind.
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Part V

Beliefs
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Consider the following judgments:

• An investor picking which stock or fund they should invest in

• A surgeon deciding whether an operation would result in a good outcome
for the patient

• You considering how much you need to save to have a good retirement

• A judgment as to whether your friend is bluffing or genuinely has a strong
poker hand.

These judgments involve risk (the probabilities are known) or uncertainty (the
probabilities are unknown). We do not know all elements of the current state
of the world and the probability that we are in any particular state. We do not
know what will happen in the future and the probability with which each state
occurs.

To analyse decision-making under risk and uncertainty, we need to consider how
people form beliefs and compute probabilities in any decision.

I will do this first by examining the foundations of probability theory. I will then
discuss several heuristics that are proposed to be used in probability judgment.
This sets a basis to examine biases in probability judgment and the heuristics
and models that have been proposed as explanations for these biases. As a
contrast, we will also examine how heuristics can function as effective decision-
making tools. Finally, I will consider several dimensions of overconfidence.
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Chapter 32

Probability foundations

In this part, I introduce some basic concepts in probability theory.

32.1 The probability function

The probability of an outcome is the chance with which it occurs. We denote the
probability of outcome 𝐴 as 𝑃(𝐴), where 𝑃(⋅) represents a probability function
that assigns a real number to each event.
The probability function has the following features.
First, the probability of outcome 𝐴 lies between 0 and 1. That is:

0 ≤ 𝑃(𝐴) ≤ 1

For example, the probability of drawing the Ace of Spades from a full deck of
52 cards is 1 in 52 or ~0.02.
The probability of flipping a head with a fair coin is 1 in 2 or 0.5.
Second, the probability of the entire outcome space equals 1.
For example, suppose we have 52 possible cards we can draw from the deck,
each with 1 in 52 probability. If we draw a single card, the probability that we
draw one of those cards is:

1
52 + 1

52 + 1
52 + ... + 1

52 =
𝑛=52
∑
𝑛=1

1
52

= 1
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Third, suppose outcomes 𝐴 and 𝐵 are mutually exclusive. In that case, the
probability of 𝐴 or 𝐵 is the sum of the probability of 𝐴 and the probability of
𝐵. That is:

𝑃(𝐴 or 𝐵) = 𝑃(𝐴 ∪ 𝐵)

= 𝑃(𝐴) + 𝑃(𝐵)

For example, if we have a deck with 52 cards, the probability of pulling out an
Ace with a single draw is as follows.

𝑃(𝐴♠ ∪ 𝐴♡ ∪ 𝐴♢ ∪ 𝐴♣) = 𝑃(𝐴♠) + 𝑃(𝐴♡) + 𝑃(𝐴♢) + 𝑃(𝐴♣)

= 1
52 + 1

52 + 1
52 + 1

52

= 4
52

Alternatively, suppose outcomes 𝐴 and 𝐵 are not mutually exclusive. In that
case, the probability of one or the other is the sum of the probability of 𝐴 and
the probability of 𝐵 minus the probability of both occurring. That is:

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)

where 𝑃(𝐴 ∩ 𝐵) is the probability of both outcome 𝐴 and 𝐵.

For example, if we have a deck with 52 cards, the probability of pulling out an
Ace or a Diamond with a single draw is as follows.

𝑃(𝐴 ∪ ♢) = 𝑃(𝐴) + 𝑃(♢) − 𝑃(𝐴 ∩ ♢)

= 4
52 + 1

4 − 1
52

= 16
52

Finally, if outcomes 𝐴 and 𝐵 are independent, the conjunction of the two inde-
pendent outcomes is the product of their probabilities. That is

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ⋅ 𝑃 (𝐵)
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For example, suppose we draw a single card from a deck of cards, place that
card back in the deck, and then make another draw. The probability of drawing
the Ace of Spades in either draw is 1⁄52. The probability of drawing the Ace
of Spades twice is:

𝑃(𝐴♠ ∩ 𝐴♠) = 𝑃(𝐴♠) ⋅ 𝑃 (𝐴♠)

= 1
52 × 1

52

= 1
2704

Note that if 𝐴 and 𝐵 are mutually exclusive, they are not independent and
𝑃(𝐴 ∩ 𝐵) = 0.

32.2 Conditional probability

Conditional probability concerns the probability of an outcome given another
outcome.
For example, drawing a card from a deck of cards with replacement - that is,
putting back each card after it is drawn - means that whatever card was drawn
in the first draw does not affect the probability of the outcome of the second
draw. Each draw is independent of the other.
But what if you draw two cards from the same deck without replacement?
In that case, the two draws are not independent of each other. For instance,
if you pull out the Ace of Spades first, the second card cannot be the Ace of
Spades.
We say here that the probability of drawing an Ace of Spades on the second
draw is conditional on the result of the first draw.
When one outcome is conditional on another, such as the probability of outcome
𝐴 conditional on outcome 𝐵 occurring, we write this conditional probability as
𝑃(𝐴|𝐵).
Suppose I draw two cards from a deck without replacement. What is the prob-
ability of drawing an Ace for both draws?
We know that the first draw affects the probability of drawing an Ace on the
second draw. If the first card is an Ace, one less Ace is in the deck for the second
draw.
The probability of drawing an Ace on the first draw is 4 in 52. If I draw an Ace
in the first draw, the probability of drawing an Ace on the second is 3 in 51.
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There is one less Ace and one less card than for the first draw. By multiplying
the probability of these two events together, we can get the probability of an
Ace on both draws.

𝑃(Ace 1st ∩ Ace 2nd) = 𝑃(Ace 1st) ⋅ 𝑃 (Ace 2nd|Ace 1st)

= 4
52 × 3

51

= 1
221

32.2.1 Formula for conditional probability

We can see that the solution to this problem has taken the form:

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵)

The joint probability of two outcomes equals the probability of 𝐴 conditional
on 𝐵 multiplied by the probability of 𝐵.

We can rearrange this formula to determine the probability of 𝐴 given outcome
𝐵.

𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)

If 𝐴 and 𝐵 are independent, 𝑃(𝐴|𝐵) = 𝑃(𝐴). In that case, the formula
simplifies to that for calculating the probability of the conjunction of inde-
pendent outcomes we saw earlier, 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ⋅ 𝑃 (𝐵). The equation
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) is a more general version of how to calculate the
conjunction of two events.

Due to symmetry, we can also write the conditional probability as:

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)

32.2.2 Example

As a test of this formula, let’s take our previous example of drawing two Aces
from the same deck. What is the probability of drawing an Ace on the second
draw if you drew an Ace on the first?
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𝑃(Ace 2nd|Ace 1st) = 𝑃(Ace 1st ∩ Ace 2nd)
𝑃 (Ace 1st)

=
1

221
4
52

= 3
51

32.2.3 The Monty Hall problem

Consider the following problem as answered by Marilyn vos Savant in her column
Ask Marilyn in Parade magazine (Savant, 1990):

Suppose you’re on a game show and you’re given the choice of three
doors: Behind one door is a car; behind the others, goats. You pick
a door, say No. 1, and the host, who knows what’s behind the doors,
opens another door, say No. 3, which has a goat. He then says to
you, “Do you want to pick door No. 2?” Is it to your advantage to
switch your choice?

This problem is known as the Monty Hall problem as it is loosely based on the
American game show Let’s Make a Deal. Monty Hall was the original host of
the show.

Assume that the rules of this game show are that:

• The host must always open a door that you did not choose.

• The host must always open a door to reveal a goat and never the car.

• The host must always offer you the choice to switch between the chosen
door and the remaining closed door.

For this question, you are effectively being asked: what is the probability that
the car is behind Door 2 conditional on the host opening door 3.

To help us think about this problem, consider the following tree that maps the
possible outcomes after you select Door 1. The first split of the tree represents
the 1/3 probability that the car is behind each of the three doors. Given the
car’s location, the next split represents the probability that the host opens each
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door. The final column indicates the probability of each combination of car
location and door opened.

If the car is behind Door 1, which you have selected, the host could open either
Door 2 or Door 3 with equal probability. If the car is behind Door 2, the host
must open Door 3. If the car is behind Door 3, the host must open Door 2.

Given the host opened Door 3, we can calculate the conditional probability that
the car is behind door 2 as follows:

𝑃(𝐶2|𝐷3) = 𝑃(𝐶2 ∩ 𝐷3)
𝑃(𝐷3)

=
1
3

1
3 + 1

6

= 2
3

You should switch to door 2.
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Chapter 33

Bayes’ rule

Bayes’ rule is a method for estimating the conditional probability of an event.

Specifically, Bayes’ rule allows us to use the following information to estimate
the conditional probability of outcome 𝐴 given outcome 𝐵:

• The unconditional probability of outcome 𝐴
• The probability of observing outcome 𝐵 given outcome 𝐴
• The total probability of outcome 𝐵.

The formula for Bayes’ rule is:

𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)

= 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵)

The denominator 𝑃(𝐵) is the total probability of event 𝐵. If the total probabil-
ity of event 𝐵 is not directly available, we can often calculate it with information
concerning the conditional probabilities of 𝐵 given the occurrence (or not) of
𝐴.

𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) + 𝑃(𝐵|¬𝐴)𝑃(¬𝐴)

The symbol ¬ represents “not”.

We can therefore write Bayes’ rule as follows:
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𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵)

= 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵|𝐴)𝑃(𝐴) + 𝑃(𝐵|¬𝐴)𝑃(¬𝐴)

33.1 Updating beliefs

We can think of Bayes’ rule as how we should update our beliefs in light of a
new event.
Rational agents should update their beliefs using Bayes’ rule.
In this case, the following elements are involved:

• A hypothesis, 𝐻. For example, “the coin is fair” or “the coin is rigged”.

• The prior probability of the hypothesis 𝐻 being true, 𝑃(𝐻). For example,
“the coin is fair” has a prior probability of 0.5.

• The probability of observing event 𝐸 given a hypothesis 𝐻, 𝑃(𝐸|𝐻). For
example, “the coin shows a head” has a probability of 0.5 given that the
coin is fair.

• The posterior probability of the belief 𝐻 given the event 𝐸, 𝑃(𝐻|𝐸). For
example, we would have an updated probability in our hypothesis that
“the coin is fair” based on the coin showing a head.

Under this framing, Bayes’ rule is formulated as follows:

𝑃(𝐻|𝐸)⏟
Posterior belief

= 𝑃(𝐸|𝐻)
Prior belief

⏞𝑃(𝐻)
𝑃(𝐸)

= 𝑃(𝐸|𝐻)𝑃(𝐻)
𝑃(𝐸|𝐻)𝑃(𝐻) + 𝑃(𝐸|¬𝐻)𝑃(¬𝐻)

33.2 A rigged coin

Suppose your friend has two coins. One is a fair coin with a head on one side
and a tail on the other. The second coin is a rigged coin with a head on both
sides.
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Your friend takes one of the coins and flips it. The coin shows a head. What is
the probability that this coin is the rigged coin?
We will assume that he randomly selected either coin with a probability of 50%.
We take that as our prior belief:

𝑃(rigged) = 0.5

The probability of a head if it is the rigged coin is 1.

𝑃(head|rigged) = 1

To use Bayes’ rule, we need the total probability that a head comes up, 𝑃(head).
Here we will use the formula for total probability.

𝑃(head) = 𝑃(head|rigged)𝑃 (rigged) + 𝑃(head|fair)𝑃 (fair)

= 1 × 0.5 + 0.5 × 0.5

= 0.75

Putting this into Bayes’ rule:

𝑃(rigged|head) = 𝑃(head|rigged)𝑃 (rigged)
𝑃 (head)

= 1 × 0.5
0.75

= 2
3

Your friend flips the coin again and gets another head. What is the updated
probability that the coin is rigged?
The prior belief is now 𝑃(rigged) = 2

3 .
The total probability of flipping a head is:

𝑃(head) = 𝑃(head|rigged)𝑃 (rigged) + 𝑃(head|fair)𝑃 (fair)

= 1 × 2
3 + 0.5 × 1

3

= 5
6
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Putting this into Bayes rule:

𝑃(rigged|head) = 𝑃(head|rigged)𝑃 (rigged)
𝑃 (head)

= 1 × 2
3

5
6

= 4
5

Your belief that the coin is rigged has now increased to 80%.
Your friend flips the coin 10 more times and gets 10 more heads. What is the
updated probability that the coin is rigged?
We use our prior belief of 𝑃(rigged) = 4

5 .
The total probability of flipping 10 heads is:

𝑃(10 heads) = 𝑃(10 heads|rigged)𝑃 (rigged) + 𝑃(10 heads|fair)𝑃 (fair)

= 1 × 4
5 + (1

2)
10

× 1
5

= 0.8002

Putting this into Bayes’ rule:

𝑃(rigged|10 heads) = 𝑃(10 heads|rigged)𝑃 (rigged)
𝑃 (10 heads)

= 1 × 4
5

0.8002

= 0.99976

We now believe the coin is rigged with greater than 99.9% probability.

33.3 Balls from an urn

You have two urns filled with balls. Urn 1 has 30% black balls and 70% yellow
balls. Urn 2 has 70% black balls and 30% yellow balls. The labels have fallen
off the urns, so you do not know which urn is which.
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You reach into one of the urns and pull out a yellow ball. What is the probability
that you have drawn the ball from urn 1?
The Bayes’ rule formula to solve this problem is:

𝑃(urn 1|yellow) = 𝑃(yellow|urn 1)𝑃 (urn 1)
𝑃 (yellow)

We take the prior probability of the ball coming from urn 1 to be 50%. The
probability of drawing a yellow ball from urn 1 is 70%.
The total probability of drawing a yellow ball is:

𝑃(yellow) = 𝑃(yellow|urn 1)𝑃 (urn 1) + 𝑃(yellow|urn 2)𝑃 (urn 2)

= 0.3 × 0.5 + 0.7 × 0.5

= 0.5

Putting this into Bayes’ rule:

𝑃(urn 1|yellow) = 𝑃(yellow|urn 1)𝑃 (urn 1)
𝑃 (yellow)

= 𝑃(yellow|urn 1)𝑃 (urn 1)
𝑃 (yellow|urn 1)𝑃 (urn 1) + 𝑃(yellow|urn 2)𝑃 (urn 2)

= 0.7 × 0.5
0.7 × 0.5 + 0.3 × 0.5

= 0.7

You put the first ball back in the urn, reach in again and pull out a black ball.
What is the probability that you have drawn the ball from urn 1?
Given we have already drawn one ball and updated our probability, we will use
the prior probability of 𝑃(urn 1) = 0.7.
The total probability of drawing a black ball is:

𝑃(black) = 𝑃(black|urn 1)𝑃 (urn 1) + 𝑃(black|urn 2)𝑃 (urn 2)

= 0.3 × 0.7 + 0.7 × 0.3

= 0.42
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Putting this into Bayes rule:

𝑃(urn 1|black) = 𝑃(black|urn 1)𝑃 (urn 1)
𝑃 (black)

= 0.3 × 0.7
0.42

= 0.5

The answer of 0.5 should seem intuitive. We have now drawn one black and one
yellow ball. In combination, this is uninformative and we are back at our initial
prior of 0.5.

33.4 The Monty Hall problem

Recall the Monty Hall problem:

Suppose you’re on a game show and you’re given the choice of three
doors: Behind one door is a car; behind the others, goats. You pick
a door, say No. 1, and the host, who knows what’s behind the doors,
opens another door, say No. 3, which has a goat. He then says to
you, “Do you want to pick door No. 2?” Is it to your advantage to
switch your choice?

Assume that the rules of this game show are that:

• The host must always open a door that you did not choose.

• The host must always open a door to reveal a goat and never the car.

• The host must always offer you the choice to switch between the chosen
door and the remaining closed door.

We want to know the probability that the car is behind Door 2 given the host
opened Door 3. We want to know 𝑃(𝐶2|𝐷3). 1

To determine this using Bayes’ rule, we would use the following formula:
1Technically, we want 𝑃(𝐶2|𝐷3 ∩ 𝑋1) where 𝑋1 is our selection of Door 1. However,

adding this complication to the calculation does not change the answer.
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𝑃(𝐶2|𝐷3) = 𝑃(𝐷3|𝐶2)𝑃(𝐶2)
𝑃(𝐷3)

𝑃(𝐷3) is the probability that the host opens Door 3. It is calculated using the
formula for total probability:

𝑃(𝐷3) = 𝑃(𝐷3|𝐶1)𝑃(𝐶1) + 𝑃(𝐷3|𝐶2)𝑃(𝐶2) + 𝑃(𝐷3|𝐶3)𝑃(𝐶3)

Each of those elements are as follows.
𝑃(𝐶1), 𝑃(𝐶2) and 𝑃(𝐶3) are our prior probability of the car being behind each
door, which is 1

3 .
𝑃(𝐷3|𝐶1) is the probability that the host opens door 3, given the car is behind
door 1. The host could open either of Door 2 or Door 3 as neither has the car
behind it, so the probability of Door 3 is 1

2 .
𝑃(𝐷3|𝐶2) is the probability that the host opens Door 3, given the car is behind
Door 2. The host must open that door, so the probability is one. They cannot
open the door you have chosen or the door that the car is behind.
𝑃(𝐷3|𝐶3) is the probability that the host opens door 3, given the car is behind
door 3. The host cannot open a door to show the car, so the probability is zero.
Returning to our equations, the total probability of the host opening Door 3 is:

𝑃(𝐷3) = 𝑃(𝐷3|𝐶1)𝑃(𝐶1) + 𝑃(𝐷3|𝐶2)𝑃(𝐶2) + 𝑃(𝐷3|𝐶3)𝑃(𝐶3)

= 1
2 × 1

3 + 1 × 1
3 + 0 × 1

3

= 1
2

Now we can calculate the probability that the car is behind Door 2, given the
host opened Door 3:

𝑃(𝐶2|𝐷3) = 𝑃(𝐷3|𝐶2)𝑃(𝐶2)
𝑃(𝐷3)

= 1 × 1
3

1
2

= 2
3
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The contestant should switch doors.

33.5 A loaded dice

You have two six-sided dice.

• One die is fair with the numbers 1 through to 6 occurring with equal
probability.

• The other die is loaded and always rolls an even number. It rolls a 2, 4 or
6 with equal probability.

You pull one die out of your pocket and roll it. You did not check which die
it was before you rolled. (Assume you could have pulled either die out of your
pocket with equal probability.)

a) The die shows a six. What is the probability that it is the loaded die?
Calculate your answer using Bayes’ rule.

𝑃(D1 loaded|6) = 𝑃(6|D1 loaded)𝑃 (D1 loaded)
𝑃 (6)

= 𝑃(6|D1 loaded)𝑃 (D1 loaded)
𝑃 (6|D1 loaded)𝑃 (D1 loaded) + 𝑃(6|D1 fair)𝑃 (D1 fair)

=
1
3 × 0.5

1
3 × 0.5 + 1

6 × 0.5

= 0.67

The first die is the loaded die with 66.7% probability.

b) You pull the other die out of your pocket and roll it. It shows a 5. What is
the updated probability that the first die you pulled out of your pocket is the
loaded die? Calculate your answer using Bayes’ rule.
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𝑃(D2 fair|5) = 𝑃(5|D2 fair)𝑃 (D2 fair)
𝑃 (5)

= 𝑃(5|D2 fair)𝑃 (D2 fair)
𝑃 (5|D2 fair)𝑃 (D2 fair) + 𝑃(5|D2 loaded)𝑃 (D2 loaded)

=
1
6 × 2

3
1
6 × 2

3 + 0 × 1
3

= 1

The first die is the loaded die with 100% probability. This should make intuitive
sense. The second die showed a 5 and is, therefore, fair with 100% probability.
The loaded die never shows a 5.
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Chapter 34

Heuristics

Heuristics are mental shortcuts or rules of thumb that people use to make de-
cisions. They differ from optimisation in that they typically involve a limited
information set and a more computationally tractable decision method.
An example of a heuristic is the recognition heuristic. Under this heuristic, if
one of two objects is recognised, infer that the recognised object is more likely
to be the target object. For example, if you want to predict which of two players
will win a tennis match, and you know of only one of the two players, infer that
the player you know will win. Similarly, if judging the relative size of two cities,
of which you have heard of only one, infer that the city you have heard of is
larger.
There is substantial evidence that people use heuristics. People don’t normally
calculate conditional probabilities using Bayes’ rule. Instead, the heuristics
might approximate Bayes rule under certain conditions.
Heuristics are often accurate and tractable, but in some environments can lead
to error.
Tversky and Kahneman (1974) defined three now classic heuristics: representa-
tiveness, availability and anchoring.
I will illustrate these three and then discuss a series of biases in probability
judgment for which these heuristics may provide an explanation.

34.1 Representativeness heuristic

Suppose you wish to estimate the probability that an event or person belongs
to a certain class.

• “What is the probability that event 𝐴 belongs to class 𝐵?”
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• “What is the probability that process 𝐵 will generate event 𝐴?”

Under the representativeness heuristic, people evaluate probabilities by the de-
gree to which 𝐴 is representative of (similar to) 𝐵.
Tversky and Kahneman (1974) provide the following example:

[C]onsider an individual who has been described by a former neigh-
bor as follows:
“Steve is very shy and withdrawn, invariably helpful, but with little
interest in people, or in the world of reality. A meek and tidy soul,
he has a need for order and structure, and a passion for detail.”
How do people assess the probability that Steve is engaged in a par-
ticular occupation from a list of possibilities (for example, farmer,
salesman, airline pilot, librarian, or physician)? How do people order
these occupations from most to least likely? In the representative-
ness heuristic, the probability that Steve is a Iibrarian, for example,
is assessed by the degree to which he is representative of, or similar
to, the stereotype of a librarian. Indeed, research with problems of
this type has shown that people order the occupations by probability
and by similarity in exactly the same way.

34.2 Availability heuristic

Under the availability heuristic, people assess the frequency of a class or the
probability of an event by the ease with which they can recall instances or
occurrences. If an event is more “available”, it is judged to have a higher
frequency or probability.
For example, if assessing the probability of a heart attack, you might recall
occurrences among people you know. If you are assessing the probability of
shark attack, you might recall how often you hear of attacks on the news.
In one experiment, Tversky and Kahneman (1974) gave experimental subjects
lists of names. In some lists, the men were more famous than the women, and
in other lists, vice versa. After viewing the list, they were asked whether the
list had more men or women.
For each list, the subjects judged that the sex with more famous names was
more common. Those names were more available in their minds.

34.3 Anchoring and adjustment

When using anchoring and adjustment, people estimate by starting from an
initial value and adjust from that value to obtain the final estimate.
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Suppose you know the odds of outcome 𝐴, and want to estimate the odds of
outcome 𝐵. Anchoring and adjustment implies that you will start with the odds
of outcome 𝐴 and adjust to obtain the odds of outcome 𝐵.

The accuracy of anchoring and adjustment depends on the anchor’s quality and
the size of the adjustment from the anchor.

The quality of the anchor relates to the strength of the correlation between the
anchor and the quantity being estimated. Empirically, people tend to use weak
or irrelevant anchors.

The size of the adjustment then needs to account for the relationship between
the anchor and the quantity being estimated. Empirically, observed adjustments
from the anchor are too small.

As an example, Tversky and Kahneman (1974) asked subjects to estimate the
percentage of African countries in the United Nations.

A number between 0 and 100 was determined by spinning a wheel in the subjects’
presence. The subjects were instructed to indicate first whether that number
was higher or lower than the estimated percentage, and then to estimate the
value of the quantity by moving upward or downward from the given number.

Different groups were given different numbers from the wheel. These arbitrary
numbers had a marked effect on estimates. The median estimates of the per-
centage of African countries in the United Nations were 25 and 45 for groups
that received numbers 10 and 65 from the wheel, respectively.

Payoffs for accuracy did not reduce the effect of the anchor.

34.4 Heuristics examples

34.4.1 A used car

You are shopping for a used car. You see a car you like and ask the salesperson
how much it costs.

She says “one hundred thousand dollars”. You know this number is too high,
and after some negotiation, purchase the car for $20,000. You feel pleased with
your negotiation skills.

You later see a similar car for sale for $15,000.

What heuristic could lead to your pattern of behaviour?

This pattern of behaviour could be caused by anchoring and adjustment.

When using anchoring and adjustment, people estimate by starting from an
initial value and adjust from that value to obtain the final estimate. Empirically,
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people tend to use weak or irrelevant anchors and make insufficient adjustments
from the anchor.

When the car dealer stated the high price, this acted as an anchor, even though
you knew it was too high. You used a weak anchor.

That you ultimately purchased the car for too much suggests you insufficiently
adjusted for that weak anchor.

34.4.2 A wealthy person

You see a person who drives a luxury car and wears designer clothes. You decide
they must be wealthy, even though you have no other information about this
person.

a) What heuristic could lead to this belief?

The representativeness heuristic could cause this belief.

Under the representativeness heuristic, people evaluate probabilities by the de-
gree to which 𝐴 is representative of (similar to) 𝐵.

In this case, a person driving a luxury car and wearing designer clothes is highly
representative of a wealthy person. You place a high probability on them being
wealthy.

b) Explain how using this heuristic would differ from using Bayes’ rule in this
situation.

Under Bayes’ rule, the probability that someone is wealthy is a function of:

• the probability that any particular person in the population is wealthy
(the base rate that forms your prior probability)

• the probability that a wealthy person will drive a luxury car and wear
designer clothes

• the probability that a non-wealthy person will drive a luxury car and wear
designer clothes.

They take that prior probability and update it based on the evidence they have
observed.

Bayes’ rule differs from that under the representativeness heuristic in that it
considers the population’s base rate. What proportion of people are wealthy?
The representativeness heuristic does not. The representativeness heuristic is
largely based on the probability that a wealthy person will drive a luxury car
and wear designer clothes relative to a non-wealthy person - that is, how repre-
sentative clothing and cars are of wealth.
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Chapter 35

Biases in probability
judgment

In this part, I introduce several biases in probability judgment:

• The conjunction fallacy
• Base-rate neglect
• Probability matching
• The gambler’s fallacy
• The hot hand fallacy

35.1 The conjunction fallacy

The first involves the conjunction fallacy. The conjunction fallacy occurs when
someone judges the probability of the conjunction of two events to be greater
than the probability of one or both events.

For example, if we have two outcomes, 𝐴 and 𝐵, the probability of both 𝐴 and
𝐵 occurring - that is, the conjunction of 𝐴 and 𝐵 - should be less than or equal
to each of the individual probabilities.

The most famous example of the conjunction fallacy comes from Tversky and
Kahneman (1983). They asked students to read the following statement:

Linda is 31 years old, single, outspoken, and very bright. She ma-
jored in philosophy. As a student, she was deeply concerned with
issues of discrimination and social justice, and also participated in
anti-nuclear demonstrations.
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45 455P(A) P(B)P(A and B)

Figure 35.1: The conjunction of P(A) and P(B)

Tversky and Kahneman asked the students to rank the following statements
from most to least probable:

1. Linda is a teacher in elementary school.
2. Linda works in a bookstore and takes Yoga classes.
3. Linda is active in the feminist movement.
4. Linda is a psychiatric social worker.
5. Linda is a member of the League of Women Voters.
6. Linda is a bank teller.
7. Linda is an insurance salesperson.
8. Linda is a bank teller and is active in the feminist movement.

Note that “8. Linda is a bank teller and is active in the feminist movement” is
a conjunction of “3. Linda is active in the feminist movement” and “6. Linda
is a bank teller”.

Tversky and Kahneman found in a sample of students that 88% ranked 3 before
8 before 6. “6. Linda is a bank teller” was rated less probable than “8. Linda
is a bank teller and is active in the feminist movement”.

To understand why this is an error, recall that the probability of the conjunction
of two outcomes is as follows:

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
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If 𝑃(𝐴|𝐵) < 1 and 𝑃(𝐵|𝐴) < 1, 𝑃(𝐴 ∩ 𝐵) must be less than 𝑃(𝐴) or 𝑃(𝐵).
One explanation for why people make this error relates to the representativeness
heuristic.

Tversky and Kahneman constructed the description of Linda to be representa-
tive of a feminist and unrepresentative of a bank teller. If people use the rep-
resentativeness heuristic to order the statements, they will likely rank 8 above
6.

The Linda Problem is one of the most heavily debated experiments in the social
sciences.

For example, Hertwig and Gigerenzer (1999) argue that people infer non-
mathematical meaning to the word “probability”, taking it to mean “plausible”
or “credible”.

While this is possibly a fair critique of the Linda problem, other illustrations of
the conjunction fallacy appear more robust.

For example, Tversky and Kahneman (1983) created this example involving rolls
of a die:

Consider a regular six-sided die with four green faces and two red
faces. The die will be rolled 20 times and the sequence of greens (G)
and reds (R) will be recorded. You are asked to select one sequence,
from a set of three, and you will win $25 if the sequence you chose
appears on successive rolls of the die. Please check the sequence of
greens and reds on which you prefer to bet.

1. RGRRR
2. GRGRRR
3. GRRRRR

65% of experimental subjects chose sequence 2. It appears more “representative”
of a die with four green faces and two red faces. But note that 1 is contained
within 2 and is strictly more likely. The fact subjects are betting on the outcome
should remove doubt about interpretation.

35.2 Base-rate neglect

The base rate is the probability of an outcome unconditional on any evidence.

For example, if 1% of the population has COVID-19 and the remainder doesn’t,
the base rate of COVID-19 is 1%. If you were to obtain evidence that someone
has COVID-19, such as a positive COVID-19 test, you would use that base rate
in determining the conditional probability that they have the disease.
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Base rate neglect is the failure to consider an event’s base rate when making a
judgment.

35.2.1 The cab problem

One illustration of base-rate neglect comes from the cab problem by Tversky
and Kahneman (1982). It involves the following story:

A cab was involved in a hit and run accident at night. Two cab
companies, the Green and the Blue, operate in the city. Participants
are given the following data:

1. 85% of the cabs in the city are Green, 15% are Blue.
2. A witness identified the cab as Blue. The court tested the

reliability of the witness under the same circumstances that
existed on the night of the accident and concluded that the
witness correctly identified each one of the two colours 80% of
the time.

What is the probability that the cab involved in the accident was
Blue rather than Green?

In the experiment, the median and modal answer was 80%.

The correct answer is 41%.

The experimental result indicates confusion between conditional probabilities.
The experimental participants were confusing the probability of the witness
identifying a blue cab given that the cab was blue, with the probability of the
cab being blue given that the witness identified it as blue. However, we need
to use Bayes’ rule to calculate the probability of the cab being blue, given that
the witness identified it as blue.

𝑃(claim blue|blue)⏟⏟⏟⏟⏟⏟⏟⏟⏟
80%

≠ 𝑃(blue|claim blue)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Requires Bayes’ rule

The experimental subjects effectively neglected the rarity of blue cabs. A witness
seeing a blue cab is representative of what would occur if the cab were blue.

The correct answer is as follows:

263



𝑃(blue|claim blue) = 𝑃(claim blue|blue)𝑃 (blue)
𝑃 (claim blue)

= 𝑃(claim blue|blue)𝑃 (blue)

(𝑃(claim blue|blue)𝑃 (blue)
+ 𝑃(claim blue|¬blue)𝑃 (¬blue))

= 0.8 × 0.15
0.8 × 0.15 + 0.2 × 0.85

= 0.41

35.2.2 Medical diagnosis

We can also see base rate neglect in the context of diagnosing a rare disease.

Consider the following problem:

You test yourself for COVID-19. The following information is
known:

• The probability that a person has COVID-19 is 1% (the preva-
lence).

• If a person has COVID-19, the probability that they test posi-
tive is 90% (the sensitivity).

• If a person does not have COVID-19, the probability that
they nevertheless test positive is 9% (the false positive rate).

You test positive. What is the chance that you have COVID-19?

When problems of this nature are given to physicians, around 10 to 20% reason
using Bayes’ rule (for example, see Hoffrage et al. (2015)). The most common
answers approximate the sensitivity, 90% for this example.

As for the cab problem, there is confusion between the conditional probabilities.

𝑃(COVID|+ve) ≠ 𝑃(+ve|COVID)

One hypothesis for this error is that a positive test is “representative” of someone
with COVID-19. As a result, the test is given greater weight than the more
general information about the base rate.
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The correct answer is:

𝑃(COVID|+ve) = 𝑃(+ve|COVID)𝑃 (COVID)
𝑃 (+ve)

= 𝑃(+ve|COVID)𝑃 (COVID)

(𝑃(+ve|COVID)𝑃 (COVID)
+ 𝑃(+ve|¬COVID)𝑃 (¬COVID))

= 0.9 × 0.01
0.9 × 0.01 + 0.09 × 0.99

= 0.092

35.2.3 Natural frequencies

Let us reconsider this medical problem with an alternative representation. This
representation uses “natural frequencies”.

You test yourself for COVID-19. The following information is
known:

• Ten in every 1000 people have COVID-19 (the prevalence).
• Of these 10 people with COVID-19, nine will test positive (the

sensitivity).
• Of the 990 people without COVID-19, about 89 nevertheless

test positive (the false positive rate).

You test positive. What is the chance that you have COVID-19?

Seeing a representation in this manner makes the base rate (and the rate of
false positives) much more salient, and leads to more accurate estimates of
the conditional probabilities. We can see that the probability that we have
COVID-19, given we tested positive for COVID-19, equals the number of people
who have COVID-19 who have tested positive, divided by the total number of
positive tests:
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𝑃(COVID|+ve) = 𝑛(+ve ∩ COVID)
𝑛(+ve)

= 9
9 + 89

= 0.092

Cosmides and Tooby (1996) first proposed using natural frequencies in this way.
We derive natural frequencies by observing cases representatively sampled from
a population.

Hoffrage and Gigerenzer (1998) reported that this change in representation in-
creased the proportion of correct answers among physicians from 10% to 46%.

There is evidence that you can get further gains through a frequency tree rep-
resentation (e.g. Spiegelhalter and Gage (2015)). Below is one such tree from
Gigerenzer (2011), which they compare with a tree using conditional probabili-
ties.
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The numbers at the bottom of the conditional probability tree do not contain the
base rate information. You can’t simply compare them to calculate conditional
probabilities. You need to refer to the middle layer. Conversely, the natural
frequency tree contains all you need to calculate the conditional probability in
the bottom row.

To illustrate this point, consider what happens if we convert the numbers at
the bottom of the conditional probability tree into frequencies: 900 in 1000, 10
in 1000, 90 in 1000 and 910 in 1000. Gigerenzer calls these simple frequencies.
While simple frequencies can make a problem more tractable, they do not allow
us to calculate conditional probabilities. Simple frequencies are just a restate-
ment of the probabilities. In contrast, natural frequencies are joint frequencies,
such as the number of people who test positive and who have COVID-19.
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35.2.3.1 Identifying a finch

The following example provides another illustration of the use of Bayes’ rule
and natural frequencies.
You are trying to spot a rare type of bird, the Darwin finch. It looks very similar
to the Wallace finch, except for a slight difference in the shape of its beak. You
know the following about the finches in your area:

• 99% of the finches are Wallace finches. The remaining 1% are Darwin
finches.

• If you spot a Darwin finch, you will correctly identify it as a Darwin finch
95% of the time. The other 5% of the time, you identify it as a Wallace
finch.

• If you spot a Wallace finch, you will correctly identify it as a Wallace finch
95% of the time. The other 5% of the time, you identify it as a Darwin
finch.

You spot a finch and identify it as a Darwin finch.
What is the probability that the finch is a Darwin finch?
First, I use Bayes’ rule to calculate the probability.

𝑃(𝐷|𝐼) = 𝑃(𝐼|𝐷)𝑃(𝐷)
𝑃(𝐼)

= 𝑃(𝐼|𝐷)𝑃(𝐷)
𝑃(𝐼|𝐷)𝑃(𝐷) + 𝑃(𝐼|¬𝐷)𝑃(¬𝐷)

= 0.95 × 0.01
0.95 × 0.01 + 0.05 × 0.99

= 0.16

The probability that it is a Darwin finch is 16%.
Next, I use natural frequencies to calculate that same conditional probability.
Suppose there are 10,000 finches.
That would mean there are 100 Darwin finches and 9,900 Wallace finches.
If I spotted these 100 Darwin finches, I would identify 95 as Darwin finches.
If I spotted a Wallace Finch, I would identify 0.05 × 9900 = 495 as Darwin
Finches.
That means 95 of the 95+495=590 birds I identify as Darwin finches would be
Darwin finches.
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Therefore:

𝑃(𝐷|𝐼) = 95
590

= 0.16

Note that in this example, I have started with a number of finches, 10,000,
which allows me to avoid fractions and small decimals. If I started with only
100 finches, I would later be talking about an unintuitive 4.95 finches. If you
are using natural frequencies to solve a problem of conditional probability, you
should choose a large enough number to avoid complicated fractions and deci-
mals. Alternatively (or in conjunction), round any unintuitive numbers to the
nearest whole number, giving you an approximate answer in your final calcula-
tion.

35.3 Probability matching

Probability matching is the tendency of people to mirror the probability dis-
tributions they observe in their predictions of events. For example, if asked to
predict whether a die will show a six or not, they will predict six around one in
six rolls.
The strategy of probability matching is not optimal for minimising prediction
error.
Consider the following experimental setup:

• A red lamp that turns on with probability 𝑝 = 0.70
• A green lamp that turns on with probability 𝑞 = 0.30

Participants predict which light will turn on after observing a series of flashes.
What do participants do?
The predictions tend to reflect the actual probabilities of the two light bulbs
being turned on. People tend to predict 70% of the time that the red lamp will
come on and 30% of the time that the green lamp will come on.
With probability matching, the probability of a successful guess is:

𝑝(success) = 0.7 × 0.7 + 0.3 × 0.3

= 0.58
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A better strategy is always to select the event with the highest probability. In
this example, participants should always predict that the red light will be turned
on, giving them a 70% probability of a successful guess.
Similarly, for my earlier example of a die roll, the option with lowest error is
always to predict that the die will not show a six.

35.4 The gambler’s fallacy

The gambler’s fallacy is the false belief that an outcome not recently realised in
a sequence of independent draws is more likely to occur on the next draw.
For example, following three flips of a coin that all come up heads, a person
experiencing the gambler’s fallacy would believe that a tail is more likely on the
next flip.
Using data from Rapoport and Budescu (1997), Rabin and Vayanos (2010)
derived the probability of heads predicted by experimental subjects, given the
last three flips being heads or tails. Following a sequence of three heads, they
predict heads on the next flip with only 30% probability. But after three tails,
they predict heads on the next flip with 70% probability.

One explanation for the gambler’s fallacy is representativeness. For example,
people do not see the sequence of coin flips HHHHHH as representative of flip-
ping a fair coin six times. They see HHTTHH as more representative, even
though both sequences have the same probability of occurring.

35.4.1 The law of small numbers

An alternative explanation is that people believe in the “law of small numbers”
(Rabin, 2002). They overestimate the degree to which a small sample will

270



resemble the population from which it is drawn. For example, if a fair coin is
flipped six times, they will overestimate the likelihood the result will be three
heads and three tails.

Imagine an urn filled with red balls and black balls. You draw balls from the
urn with replacement. The red balls are drawn with probability 𝑝 and the black
balls are drawn with probability 1 − 𝑝.
Assume Freddy knows the probabilities 𝑝 and 1−𝑝 but (wrongly) assumes balls
are drawn from the urn without replacement. If he believes there are 𝑁 balls
in the urn, he expects a sample of 𝑁 balls to match 𝑝 and 1 − 𝑝 exactly.

Under Freddy’s beliefs, outcomes are correlated. Under the actual process,
where balls are replaced, the outcomes are uncorrelated.

Imagine Freddy plays roulette. The roulette wheel contains 36 slots, 18 black
and 18 red. Assume that Freddy believes there are 18 red and 18 black “balls
in the urn”.

Freddy observes four spins of the wheel before betting. He observes a sequence
of four reds.

An unbiased belief would be that the sequence of reds tells him nothing about
future draws because the outcomes are uncorrelated.

However, Freddy believes that, after four reds, black is more likely on the next
spin. He is wrongly computing the probability based on a belief that only 14
reds remain along with 18 blacks.

̂𝑃 (𝑅𝑅𝑅𝑅𝑅|𝑅𝑅𝑅𝑅) = reds
reds + blacks

= 18 − 4
18 − 4 + 18

= 0.438

In reality, 𝑃(𝑅𝑅𝑅𝑅𝑅|𝑅𝑅𝑅𝑅) = 0.5. Freddy is suffering from the gambler’s
fallacy.

35.5 Hot hand fallacy

A person subject to the hot hand fallacy believes a streak will persist despite
each outcome being independent of the last.

For example, suppose a spectator observes a basketball player taking a series
of shots during a game. The spectator then makes predictions based on the
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observed shots, with good shots predicted to be more likely following a streak
of successful shots. After a series of good shots, they believe the player has a
“hot hand”.

Let’s look at this example in more detail.

Suppose a person takes ten shots in a basketball game. In this image, a ball is
a hit, an X is a miss.

To assess whether this person has a hot hand, we can look at their shots fol-
lowing a previous hit. For instance, in this sequence of shots, there are six
occasions where we have a shot following a hit. Five successful shots, such as
the highlighted seventh shot, are followed by another hit.

We can then compare the player’s average shooting percentage with the pro-
portion of shots they hit if the shot immediately before was a hit. If their hit
rate after a hit is higher than their normal shot probability, we might say they
get a hot hand.

Using this methodology, Gilovich et al. (1985) took shot data from various
sources, including the Philadelphia 76ers and Boston Celtics, and examined the
data for evidence of a hot hand. They also looked at whether there was a hit
or miss after streaks of hits or misses.

From this data, they argued that the hot hand was an illusion. There was
no evidence that a player was more likely to make a shot following a series of
successful shots.

35.5.1 A bias in sequences

Gilovich et al. (1985) was the first of many examinations of whether there is a
hot hand in sports (see Bar-Eli et al. (2006)). Through this research, there has
been many methodological debates and arguments about whether there might
be bias in the data, such as teams adjusting their defence in response to a player
with a hot hand. However, the general trend in the literature was a finding of
no evidence of a hot hand.

Miller and Sanjurjo (2018) provided a compelling critique of this position. They
found a statistical bias in the analysis by Gilovich et al. (1985) and many others.
The intuition behind the statistical bias is as follows.

Suppose you flip a coin three times. There are eight possible sequences of heads
and tails. Each sequence has an equal probability of occurring.
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Considering these sequences, if you were to flip a coin three times, and there is a
head followed by another flip in that sequence, what is the expected probability
that another head will follow that head?

Table 35.1 shows the proportion of heads following a previous flip of heads for
each sequence. In the table’s first row, HHH, the first flip is a head. Another
head follows that first flip. After the second flip, a head, we also have a head.
There is no flip after the third head. 100% of the heads in that sequence followed
by another flip are followed by a head.

In the second row of the table, HHT, a head follows 50% of the heads.

In the third row, there is one head followed by another flip, which is a tail. None
of the heads in that sequence are followed by a head.

And so on until the last two rows, where there are no heads followed by another
flip.

Now, back to our question. If you were to flip a coin three times, and there is a
head followed by another flip in that sequence, what is the expected probability
that another head will follow that head? It turns out the answer to this question
is 42%. I get this number by calculating the expected probability of a head given
any particular sequence. This is equal to the average of the probabilities in each
sequence.

Table 35.1: Eight possible combinations of heads and tales across three flips

Flips 𝑝(𝐻𝑡+1|𝐻𝑡)
HHH 100%
HHT 50%
HTH 0%
HTT 0%
THH 100%
THT 0%
TTH -
TTT -
Expected probability 41.7%

That calculation contrasts with what we get we count across all of the sequences,
where we see eight flips of head followed by another flip. Of the subsequent flips,
four are heads and four are tails, which is the 50% you expect.

Why do we find that difference? By looking at these short sequences, we are
introducing a bias. The cases of heads following heads tend to cluster together,
such as in the first sequence, which has two cases of a head following a head.
Yet the sequence THT, which has only one flip occurring after a head, is equally
likely to occur as HHH. A tail appears more likely to follow a heads because of
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this bias, whereby the streaks tend to cluster together. The expected probability
I get when taking a series of three flips is 42%, when in fact the actual probability
of a head following a head is 50%. As the sequence of flips gets longer, the bias
reduces in size, although it increases if we examine longer streaks, such as the
probability of a head after three previous heads.
The net effect of this bias is that the measure of the proportion of heads following
another head is biased downwards.
This bias is relevant to the analysis of the hot hand as it is present in the
methodology of the papers that purportedly demonstrated that there was no
hot hand in basketball, such as that by Gilovich et al. (1985). They effectively
took short streaks of shots and calculated the proportion of hits followed by
another hit. Their measure of the proportion of hits following a hit or sequence
of hits is biased downwards. Like our calculation using coins, a calculation using
that method results in a number lower than the actual probability of hitting a
shot.
Conversely, the hot hand pushes the probability of hitting a shot after a previous
hit up. If there is a hot hand, we should see more hits following a previous hit.
Now consider the net effect of these two forces. If there is a hot hand, the
probability of hitting a shot after a previous hit should be higher than the
average hit rate. The biased methodology pushes the measure in the other
direction. Together, the downward bias and the hot hand counteract each other.
In the case of Gilovich et al. (1985), these two countervailing forces led to the
conclusion by researchers that each shot is independent of the last.
However, if you use a methodology not subject to this bias, you get a true
measure of the hot hand. And in the case of the Gilovich et al. data, removing
the bias reveals a hot hand. Miller and Sanjurjo (2018) found that in the
Gilovich et al. data the probability of hitting a shot following a sequence of
three previous hits is 13 percentage points higher than after a sequence of three
misses.

35.5.2 Alternative intuition

Here is another way of showing that there is a bias in this sequence.
To do this, we will use Bayes’ rule with more than two variables. This operates
in a similar manner to our previous use of Bayes’ rule.
To understand this, suppose we have three possible outcomes, 𝐴, 𝐵 and 𝐶. For
these outcomes we can write the following probabilities:

𝑃(𝐴 ∩ 𝐵 ∩ 𝐶) = 𝑃(𝐴 ∩ 𝐵|𝐶)𝑃(𝐶) = 𝑃(𝐴|𝐵 ∩ 𝐶)𝑃(𝐵 ∩ 𝐶)

= 𝑃(𝐵|𝐴 ∩ 𝐶)𝑃(𝐴 ∩ 𝐶) = 𝑃(𝐶|𝐴 ∩ 𝐵)𝑃(𝐴 ∩ 𝐵)

274



And so on. We can write the joint probability of these events as varying com-
binations of the conditional probabilities.

Typically we derive Bayes’ rule by equating any two of these equations. For
instance, as 𝑃(𝐴|𝐵∩𝐶)𝑃(𝐵∩𝐶) = 𝑃(𝐵|𝐴∩𝐶)𝑃(𝐴∩𝐶) we can rearrange this
to write:

𝑃(𝐴|𝐵 ∩ 𝐶) = 𝑃(𝐵|𝐴 ∩ 𝐶)𝑃(𝐴 ∩ 𝐶)
𝑃(𝐵 ∩ 𝐶)

We will use this equation in our example.

Now, suppose we flip three coins and select at random one of the flips that
follows a heads. This means that if we select a flip that follows a head we will
select either flip 2 or flip 3.

If we select flip 2, we know that flip 1 was a head. The first two flips in the
sequence are either HT or HH.

However, we can also say that if we select flip 2, HT is twice as likely as HH.
Why? Because if the first two coins were HH we could also have chosen flip 3.

That is, if the first two flips are HT, we can only select flip 2. We select flip 2
with 100% probability. If the first two flips are HH, we select flip 2 with 50%
probability and flip 3 with 50% probability.

We are twice as likely to observe HT as HH, given we selected flip 2.

Using 𝐻𝑖 or 𝑇𝑖 to represent a head or tail on the 𝑖-th flip and X_i to represent
selection of flip 𝑖, we can show the probability of a tail given we have selected
flip 2 using Bayes’ rule. Using the equation we derived earlier involving three
potential outcomes:
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𝑃(𝑇2|𝐻1 ∩ 𝑋2) = 𝑃(𝑋2|𝐻1 ∩ 𝑇2)𝑃 (𝐻1 ∩ 𝑇2)
𝑃 (𝐻1 ∩ 𝑋2)

= 𝑃(𝑋2|𝐻1 ∩ 𝑇2)𝑃 (𝐻1 ∩ 𝑇2)

(𝑃(𝑋2|𝐻1 ∩ 𝑇2)𝑃 (𝐻1 ∩ 𝑇2)
+ 𝑃(𝑋2|𝐻1 ∩ 𝐻2)𝑃 (𝐻1 ∩ 𝐻2)

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Expand denominator using formula for total probability

= 1 × 0.25
1 × 0.25 + 0.5 × 0.25

= 2
3

𝑃(𝐻2|𝐻1 ∩ 𝑋2) = 𝑃(𝑋2|𝐻1 ∩ 𝐻2)𝑃 (𝐻1 ∩ 𝐻2)
𝑃 (𝐻1 ∩ 𝑋2)

= 𝑃(𝑋2|𝐻1 ∩ 𝐻2)𝑃 (𝐻1 ∩ 𝐻2)

(𝑃(𝑋2|𝐻1 ∩ 𝑇2)𝑃 (𝐻1 ∩ 𝑇2)
+ 𝑃(𝑋2|𝐻1 ∩ 𝐻2)𝑃 (𝐻1 ∩ 𝐻2)

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Expand denominator using formula for total probability

= 0.5 × 0.25
1 × 0.25 + 0.5 × 0.25

= 1
3

As you can only select flip 2 if flip 1 is a head, we can also say that 𝑃(𝑇2|𝐻1 ∩
𝑋2) = 𝑃(𝑇2|𝑋2) = 2

3 and 𝑃(𝐻2|𝐻1 ∩ 𝑋2) = 𝑃(𝐻2|𝑋2) = 1
3 . That is, the

probability of a tail given we have selected flip 2 is 2/3. The probability of a
head given we have selected flip 2 is 1/3. We are twice as likely to observe 𝑇2
as 𝐻2, given we have selected flip 2.

We don’t see the same bias if we select flip 3.
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If we select flip 3, we know that flip 2 was a head. But the fact we select flip 3
does not tell us anything about what flip 3 is, as flip 3 itself does not influence
the choice of flip. Whether flip 3 is a head or tail is independent of the choice
of flip 3 or the outcome of flip 2.

Accordingly:

𝑃(𝑇3|𝐻2 ∩ 𝑋3) = 𝑃(𝑇3) = 0.5

𝑃(𝐻3|𝐻2 ∩ 𝑋3) = 𝑃(𝐻3) = 0.5

We now combine the results of our examination of the second and third flip.

We are equally likely to select flip 2 or flip 3 as flips 1 and 2 will each be heads
with 50% probability. If both are heads, we select one randomly. Given we have
selected a flip, what is the probability that the following flip is a head?

𝑃(𝐻) = 𝑃(𝑋2) × 𝑃(𝐻2|𝑋2) + 𝑃(𝑋3) × 𝑃(𝐻3|𝑋3)

= 0.5 × 0.33 + 0.5 × 0.5

= 0.417

What does this mean for measurement of the hot hand?

As for before, if I take a sequence of three flips and I look at a flip after a head,
if there is at least one head, the probability that flip is a head is 0.42. This is
despite the coin flips being independent. It appears I have a cold hand.

Use that same methodology in a scenario where there is a hot hand, the bias
will counteract the hot hand and make it harder to detect, if it can be detected
at all.

35.5.3 The hot hand fallacy for truly random sequences

Despite the evidence that there is a hot hand in some sports, there is strong
evidence that there still exists a “hot hand fallacy”. People see streaks in truly
random processes, with each outcome independent of the last.

For example, Ayton and Fischer (2004) found that when people predict the
results of a roulette wheel’s spins, they increase their confidence in their predic-
tions after a series of successes. Their confidence increases despite the outcome
being random. Interestingly, they also exhibit the gambler’s fallacy in what
they predict.
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Chapter 36

Heuristics and the
bias-variance trade-off

Much of the heuristics and biases literature of Kahneman, Tversky and those
who followed in their footsteps focuses on the errors that can be caused by using
heuristics. However, there are also powerful reasons why we use heuristics in
decision making.
One of the strongest arguments for the use of heuristics relates to what is called
the bias-variance trade-off.
Suppose you are trying to make a prediction or develop an estimate based on
historical data. There is a true underlying process that is generating the data.
You plan to build a predictive model that should approximate the underlying
process. You have a noisy data sample with which to develop it and you are
trying to decide which predictors to include.
For example, you want to predict the level of dropout in a school. You have
possible predictors such as attendance rates, family socio-economic status, the
school’s average SAT score, and the degree of parental involvement in the child’s
schooling. Which of those should you include in your model?
Bias is the degree to which there are erroneous assumptions in your model. The
classic case of bias is when you have failed to include a relevant predictor. If
you exclude relevant predictors, your predictive model will not include relevant
relations between the predictors and the target output you are trying to predict.
In the school example, to the extent any of these factors are linked to dropout
rates, excluding them can bias your prediction.
However, the inclusion of too many predictors can lead to what is called vari-
ance, which is an error that arises because of the sensitivity of the model to
fluctuations in the data you use to develop the model. It ultimately involves
giving too much weight to irrelevant or marginally relevant information.

278



For example, if you included the school colours in your model, it may appear
to give you a better model due to noise. But as soon as you used that model
to make a new prediction, the inclusion of the irrelevant variable would likely
backfire.

The following image gives one conception of bias and variance. An unbiased
predictor will tend to centre on the target. A low variance predictor will tend
to cluster. A low variance, low bias estimate is the best outcome.

However, as the term bias-variance trade-off suggests, you typically can’t choose
the minimum bias, minimum variance option. There is a trade-off between the
two. As model complexity increases, bias tends to decrease, but variance tends
to go up. There is an optimal level of complexity.

279



The result of this bias-variance trade-off means that heuristics can sometimes be
better than more complex decision making strategies. This is not just because
they are tractable for the human mind - unlike, say prospect theory calculations
or Bayesian updating - but also because they find a better bias-variance trade-
off. Despite our focus on how heuristics can cause biases decisions, they can
also lead to lower error.

36.1 Simple heuristics

In a chapter in Simple Heuristics That Make Us Smart, Czerlinski et al. (1999)
describe a competition between some simple heuristics and multiple regression.
Both were used to predict outcomes across 20 environments, such as school
dropout rates and fish fertility.

One simple heuristic in their competitions was “Take the Best”. This heuristic
operates by working through variables in order of validity in predicting the
outcome. For example, if you want to know which of two schools has the highest
dropout rate, you ask which of the many possible predictive cues has the highest
validity. If student attendance rate has the highest validity, and one school has
lower attendance than the other, infer that that school with the lower attendance
has the higher dropout rate. If the attendance rate is the same, look at the next
cue.

Depending on the precise specifications, the result of the competition across
the 20 environments was either a victory for Take the Best or at least equal
performance with multiple regression. This is impressive for something that is
less computationally expensive and ignores much of the data (or in other words,
is biased).
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The reason for this success was that the simpler models had lower variance. This
enabled lower or similar total error to the more complex models that included
all variables.

36.2 Example: The gaze heuristic

As another example of a heuristic in operation, consider the gaze heuristic.

The gaze heuristic is a tool that people - and dogs - use to catch balls. The
heuristic is simply this: maintain the ball at a constant angle of gaze. If you
move to keep this angle constant, you will end up where the ball lands. Obvi-
ously, this is easier than calculating where you should be from the velocity of
the ball, the angle of flight, the effect of wind resistance and so on.

Figure 36.1: Source: Gigerenzer (2021)

But it results in a strange pattern of movement. Suppose you are close to the
point where the ball is first hit into the air. As it rises you will tend to back
away from the ball. As it then starts to fall, you will move back in. If it is hit
up to the side of you, you will move to the ball in a curve. If you examine the
path you took to catch the ball, you might call the curve a bias. However, it is
actually the result of a very effective decision-making tool.
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There are also some circumstances where the gaze heuristic works better than
others. It tends to work best when the ball is already high in the air. If you
catch sight of a ball hit straight up before it has risen far, using the heuristic for
its entire flight could require first running away from the ball and then toward
it.

Understanding this is a much richer understanding than saying that the catcher
is biased because they did not run straight to where the ball was going to land.
It also points to the power of heuristics. Try to train someone to run straight to
where a ball will land and watch them fail. Don’t see heuristics as poor cousins
of “more rational” approaches.
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Chapter 37

Overconfidence

De Bondt and Thaler (1995) wrote “Perhaps the most robust finding in the
psychology of judgment and choice is that people are overconfident.”

Take the following examples:

• A person is asked to estimate the length of the Nile by providing a range
that the respondent is 90% sure contains the correct answer. For example,
they might answer that there is a 90% probability that the Nile is between
2500km and 5000km long. However, when people answer this question,
the estimate typically contains the correct answer only 50% of the time.

• PGA golfers typically believe they sink around 75% of 6-foot putts – some
even believe they sink as many as 85% – when the average is closer to
55%.

• 93% of American drivers rate themselves as better than average. 25% of
high school seniors believe they are in the top 1% in their ability to get
along with others.

There are many similar examples, all making the case that people are generally
overconfident.

But despite each being labelled as overconfidence, note that these examples are
three different phenomena.

Overprecision is the tendency to believe that our predictions or estimates are
more accurate than they are. The typical study seeking to show overprecision
asks for someone to give confidence ranges for their estimates, such as estimating
the length of the Nile.

Overestimation is the belief that we can perform at a level beyond that which
we realistically can. The evidence here is mixed. We typically overestimate
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when attempting a difficult task, such as a six-foot putt. But on easy tasks, the
opposite is often the case – we tend to underestimate our performance. Whether
over or underestimation occurs depends upon the domain.

Overplacement is the erroneous relative judgement that we are better than
others. Obviously, we cannot all be better than average. But this relative
judgement, like overestimation, tends to vary with task difficulty. For easy
tasks, such as driving a car, we overplace and consider ourselves better than
most. But, people will rate themselves below average for a skill such as draw-
ing or identifying plants from the Amazon. People don’t suffer from pervasive
overplacement. Whether they overplace depends on what the situation is.

You might note that we tend to both underestimate and overplace our perfor-
mance on easy tasks. We can also overestimate but underplace our performance
on difficult tasks.

So, are we both underconfident and overconfident at the same time? The blanket
term of overconfidence does little justice to what is occurring.

The conflation of these different effects under the umbrella of overconfidence
often plays out in stories of how overconfidence (rarely assessed before the fact)
led to someone’s fall. For instance, evidence that people tend to believe they are
better drivers than average (overplacement) is not evidence that overconfidence
led someone to pursue a disastrous corporate merger (overestimation).

37.1 Firm entry

An example of overconfidence in action can be seen in firm entry.

Most new businesses fail within a few years. For example, one study of US
manufacturers found over 60% of entrants had exited within five years and
almost 80% within 10 years.

Camerer and Lovallo (1999) ran an experiment to test whether business failure
may be due to optimism about their relative skill.

The lab experiment involved a set of markets. Those who chose to participate
in a market were paid a set amount according to their rank within the market.
Those ranked within the “market capacity” would share a payment of $50.
Those beyond the market capacity would be penalised $10. Accordingly, if
there are 5 entrants above market capacity, the expected payoff of all entrants
is zero. More than that and it is negative.

The rank in the market was determined by either luck, through a random draw,
or a test of skill involving logic puzzles or trivia questions about sports or current
events.

In each round of the experiment, the market capacity was announced to the
players, along with whether the payoffs in the market were based on luck or
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skill. The participants were then asked to forecast the expected number of
entrants (for which they earn a payment if correct) and decide simultaneously
and without communicating whether to enter into the market. Subjects were
then told how many participants had entered.

After all of the rounds, students solved puzzles or took the trivia quiz to deter-
mine their skill rank.

The results of the experiment showed that more participants entered the market
when the ranking was based on skill than if based on random draw. This
indicates a belief that their skill level will rank them higher than a random
draw: they are above average.

An interesting element to this experiment was that for some of the markets the
participants were recruited by being asked if they would like to volunteer for an
experiment in which performance would depend on their performance on sports
or current event trivia questions. Hence the pool in those markets would be
stronger than typical.

In those markets with self-selected participants, market entry was even higher,
and payoffs were negative in most rounds. This suggests the self-selected en-
trants were overconfident in their skill due to what Camerer and Lovallo call
“reference group neglect”. The participants seem to neglect that the others in
the reference group also self-selected in to the experiment and think they are
skilled too.

Moore et al. (2007) also ran an experiment on firm entry and found, like
Camerer and Lovallo, that entrepreneurs overweight personal factors and under-
weight competitors when making entry decisions. However, when they varied
the task difficulty, they found excess entry only when the industry appeared
an easy one in which to compete. When it appeared difficult, too few entered.
People overplaced in easy markets and underplaced in hard ones.

37.2 Trading

Another domain where overconfidence has been argued to play a role is related
to trading.

A consistent finding in the analysis of trading behaviour is that more trading
leads to poorer outcomes. The higher transaction costs are not compensated
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through higher returns.

To test whether over-trading may be linked to overconfidence, Barber and Odean
(2001) examined investors by gender. Men tend to be more overconfident than
women - a point they support with evidence of overprecision, overplacement and
overestimation. If overconfidence leads to more trading, you would predict that
men would trade more than women.

Barber and Odean (2001) examined trading account data from over 35,000
households for the period from February 1991 to January 1997. They found
that men traded 45 percent more than women, reducing their net returns by
2.65 percentage points a year as opposed to 1.72 percentage points for women.
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Chapter 38

Beliefs exercises

38.1 Judging a fund manager

You want to know if a fund manager is skilled as you believe skilled management
can lead to outperformance. The following is known:

• 20% of fund managers are skilled.

• If a fund manager is skilled, the probability that they outperform the
market is 80%.

• If a fund manager is unskilled, the probability that they outperform the
market is 40%.

You observe an outperforming fund manager. What is the probability that the
fund manager is skilled?

Answer

We calculate the solution using Bayes’ rule.

𝑃(skilled|outperform) = 𝑃(outperform|skilled)𝑃 (skilled)
𝑃 (outperform)

We can calculate 𝑃(𝑜𝑢𝑡𝑝𝑒𝑟𝑓𝑜𝑟𝑚) using the law of total probability.

𝑃(outperform) = 𝑃(outperform|skilled)𝑃 (skilled) + 𝑃(outperform|unskilled)𝑃 (unskilled)

= 0.8 × 0.2 + 0.4 × 0.8

= 0.48
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Inputting this into Bayes’ rule, we get:

𝑃(skilled|outperform) = 𝑃(outperform|skilled)𝑃 (skilled)
𝑃 (outperform)

= 0.8 × 0.2
0.48

= 0.333

A fund manager who outperforms is skilled with 0.333 probability. You
cannot neglect that low base rate of skilled managers.

38.2 Detecting a terrorist

Every month 100 million people fly on commercial airlines. Imagine 10 of them
are terrorists.

Airport security are able to correctly identify that a person is a terrorist in 99%
of cases and a non-terrorist in 99.9% of cases.

a) A person is identified by airport security as a terrorist. Using Bayes’ rule,
what is the probability that they are a terrorist?

Answer

We can use Bayes’ Theorem to calculate the conditional probability:

𝑃(terrorist | identified) = 𝑃(identified | terrorist)𝑃 (terrorist)
𝑃 (identified)

= 0.99 ∗ 0.0000001
0.99 ∗ 0.0000001 + 0.001 ∗ 0.999999

= 0.000099
Or approximately 1 in 10,000.

b) Intuitive responses to questions of this type tend to involve much higher
probabilities. Discuss how intuitive responses could err due to confusion of
conditional probabilities.
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Answer

If a person confuses 𝑃(terrorist | identified) with 𝑃(identified | terrorist)
they will wrongly assume the probability that someone identified as a
terrorist is a terrorist is 99%. This is a common explanation for mistakes
of this nature: e.g. identification of cabs problem discussed in class.

c) State and solve the question in part a) in terms of natural frequencies.

Answer

Number of passengers: 100,000,000
Number of terrorists: 10
Number of terrorists identified as terrorists: 10*0.999 ≈ 10
Number of non-terrorists identified as terrorists:
0.001*100,000,000=100,000
Proportion of people identified as terrorists who are terrorists =
10/(10+100000) ≈ 1 in 10000

38.3 Rolling a die

You have two six-sided dice:

• one die is fair with the numbers 1 through to 6 occurring with equal
probability

• the other die is loaded and always rolls a 5 or a 6 with equal probability.

You pull one die out of your pocket and roll it. You did not check which die
it was before you rolled. (Assume you could have pulled either die out of your
pocket with equal probability.)

a) The die shows a six. What is the probability that it is the loaded die?

289



Answer

𝑃(D1 loaded|6) = 𝑃(6|D1 loaded)𝑃 (D1 loaded)
𝑃 (6)

= 𝑃(6|D1 loaded)𝑃 (D1 loaded)
𝑃 (6|D1 loaded)𝑃 (D1 loaded) + 𝑃(6|D1 fair)𝑃 (D1 fair)

= 0.5 × 0.5
0.5 × 0.5 + 1

6 × 0.5

= 0.75

The first die is the loaded die with 75% probability.

b) You pull the other die out of your pocket and roll it. It shows a 5. What is
the updated probability that the first die is the loaded die?

Answer

𝑃(D2 fair|5) = 𝑃(5|D2 fair)𝑃 (D2 fair)
𝑃 (5)

= 𝑃(5|D2 fair)𝑃 (D2 fair)
𝑃 (5|D2 fair)𝑃 (D2 fair) + 𝑃(5|D2 loaded)𝑃 (D2 loaded)

=
1
6 × 0.75

1
6 × 0.75 + 0.5 × 0.25

= 0.5

Each die is the loaded die with 50% probability.

38.4 Male or female

These two related questions come from magazine columnist Marilyn vos Savant.

a) A shopkeeper says she has two new baby beagles to show you, but she doesn’t
know whether they’re male, female, or a pair. You tell her that you want only
a male, and she telephones the fellow who’s giving them a bath. “Is at least
one a male?” she asks him. “Yes!” she informs you with a smile. What is the
probability that the other one is a male?
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Answer

The prior probabilities are:

𝑃(𝑀𝑀) = 0.25
𝑃(𝑀𝐹) = 𝑃(𝐹𝑀) = 0.25
𝑃(𝐹𝐹) = 0.25

Using Bayes’ rule:

𝑃(𝑀𝑀|𝑀) = 𝑃(𝑀|𝑀𝑀)𝑃(𝑀𝑀)
𝑃(𝑀)

= 𝑃(𝑀|𝑀𝑀)𝑃(𝑀𝑀)
𝑃(𝑀|𝑀𝑀)𝑃(𝑀𝑀) + 𝑃(𝑀|𝑀𝐹)𝑃(𝑀𝐹)

+ 𝑃(𝑀|𝐹𝑀)𝑃(𝐹𝑀) + 𝑃(𝑀|𝐹𝐹)𝑃(𝐹𝐹)

= 1 × 1
4

1 × 1
4 + 1 × 1

4 + 1 × 1
4 + 0 × 1

4

=
1
4
3
4

= 1
3

b) Say that a woman and a man (who are unrelated) each have two children.
We know that at least one of the woman’s children is a boy and that the man’s
oldest child is a boy. Can you explain why the chances that the woman has two
boys do not equal the chances that the man has two boys?

Answer

For the woman, the prior probabilities before learning she has a boy are:

𝑃(𝐵𝐵) = 0.25

𝑃(𝐵𝐺) = 𝑃(𝐺𝐵) = 0.25

𝑃(𝐺𝐺) = 0.25

Using Bayes’ rule:
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𝑃(𝐵𝐵|𝐵) = 𝑃(𝐵|𝐵𝐵)𝑃(𝐵𝐵)
𝑃(𝐵)

= 𝑃(𝐵|𝐵𝐵)𝑃(𝐵𝐵)
𝑃(𝐵|𝐵𝐵)𝑃(𝐵𝐵) + 𝑃(𝐵|𝐵𝐺)𝑃(𝐵𝐺)

+ 𝑃(𝐵|𝐺𝐵)𝑃(𝐺𝐵) + 𝑃(𝐵|𝐺𝐺)𝑃(𝐺𝐺)

= 1 × 1
4

1 × 1
4 + 1 × 1

4 + 1 × 1
4 + 0 × 1

4

=
1
4
3
4

= 1
3

For the man, the prior probabilities before learning his eldest is a boy are:

𝑃(𝐵𝐵) = 0.25

𝑃(𝐵𝐺) = 0.25

𝑃(𝐺𝐵) = 0.25

𝑃(𝐺𝐺) = 0.25

Using Bayes’ rule:
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𝑃(𝐵𝐵|𝐵) = 𝑃(𝐵|𝐵𝐵)𝑃(𝐵𝐵)
𝑃(𝐵)

= 𝑃(𝐵|𝐵𝐵)𝑃(𝐵𝐵)
𝑃(𝐵|𝐵𝐵)𝑃(𝐵𝐵) + 𝑃(𝐵|𝐵𝐺)𝑃(𝐵𝐺)

+ 𝑃(𝐵|𝐺𝐵)𝑃(𝐺𝐵) + 𝑃(𝐵|𝐺𝐺)𝑃(𝐺𝐺)

= 1 × 1
4

1 × 1
4 + 1 × 1

4 + 0 × 1
4 + 0 × 1

4

=
1
4
2
4

= 1
2

Note: questions such are these are typically sensitive to unstated assump-
tions, particularly around the procedure used to elicit the information
around the sex of the child. Due to this, part a) is probably less vulner-
able to alternative assumptions than b) as it contains information about
the elicitation procedure in the question.

38.5 Luggage

You have taken a flight and are worried that your luggage will not be on the
flight. You know that 20% of bags have not been arriving with the passenger.

The following table of conditional probabilities (from Pearl & Mackenzie (2018))
gives the probability that your bag will be on the luggage carousel conditional on
the bag being on the flight and how long you have been waiting at the carousel.

Bag on plane Time elapsed Carousel=true
False 0 0
False 1 0
False 2 0
False 3 0
False 4 0
False 5 0
False 6 0
False 7 0
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Bag on plane Time elapsed Carousel=true
False 8 0
False 9 0
False 10 0
True 0 0
True 1 10
True 2 20
True 3 30
True 4 40
True 5 50
True 6 60
True 7 70
True 8 80
True 9 90
True 10 100

a) You have been waiting 5 minutes for your bag and it has not arrived. What
is the probability that your bag was not on the flight?

Answer

𝑃(false|not arrived after 5) = 𝑃(not arrived after 5|false)𝑃 (false)
𝑃 (not arrived after 5)

= 𝑃(not arrived after 5|false)𝑃 (false)
𝑃 (not arrived after 5|false)𝑃 (false)

+ 𝑃(not arrived after 5|true)𝑃 (true)

= 1 × 0.2
1 × 0.2 + 0.5 × 0.8

= 0.333

The probability that the bag was not on the flight is 33%.

b) You have been waiting 9 minutes for your bag and it has not arrived. What
is the probability that your bag was not on the flight?
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Answer

𝑃(false|not arrived after 9) = 𝑃(not arrived after 9|false)𝑃 (false)
𝑃 (not arrived after 9)

= 𝑃(not arrived after 9|false)𝑃 (false)
𝑃 (not arrived after 9|false)𝑃 (false)

+ 𝑃(not arrived after 9|true)𝑃 (true)

= 1 × 0.2
1 × 0.2 + 0.1 × 0.8

= 0.714

The probability that the bag was not on the flight is 71%.

c) You have been waiting 10 minutes for your bag and it has not arrived. What
is the probability that your bag was not on the flight?

Answer

𝑃(false|not arrived after 10) = 𝑃(not arrived after 10|false)𝑃 (false)
𝑃 (not arrived after 10)

= 𝑃(not arrived after 10|false)𝑃 (false)
𝑃 (not arrived after 10|false)𝑃 (false)

+ 𝑃(not arrived after 10|true)𝑃 (true)

= 1 × 0.2
1 × 0.2 + 0 × 0.8

= 1

The probability that the bag was not on the flight is 100%.

38.6 Murder?

In a now famous case, Sally Clark was convicted of murder after the death of
her two sons. The defence argued both children had died of sudden infant death
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syndrome. The prosecution called statistical evidence that the chance of a SIDS
death was 1 in 8543, so the chance of two children dying of SIDS was 1 in 73
million (8543 × 8543).
The conviction was overturned on a second appeal. For what reasons could the
following simple calculation be misleading?

𝑃(SIDS death ∧ SIDS death) = 𝑃(SIDS death) × 𝑃(SIDS death)

= 1
8543 × 1

8543
= 1

7.3 × 107

Answer

Reason 1: The probability of a 2nd SIDS death given first SIDS death
is not independent. e.g. SIDS deaths are related due to genetics, family
environment. That is, the relevant probability is:

𝑃(SIDS death|genetics, family environment, etc)
This would mean that:

𝑃(2 SIDS deaths in same family) > (𝑃(1 SIDS death))2

The appropriate calculation is:

𝑃(SIDS death∧SIDS death) = 𝑃(1𝑠𝑡 SIDS death)×𝑃(2𝑛𝑑 SIDS death|1𝑠𝑡 SIDS death)

Reason 2: We also need to consider the probability of alternative possi-
bility - i.e. murder. We want calculate:

𝑃(murder|2 deaths) = 𝑃(2 deaths|murder)𝑃 (murder)
𝑃 (2 deaths)

If murder itself is also unlikely, then it is not correct to simply attribute
the alternative to SIDS the residual probability.

38.7 A fire alarm

You know the following statistics about fire:

• The probability of your house catching fire on any particular day is 1 in
10,000
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• Your fire alarm correctly detects a house fire 95% of the time

• The probability that your fire alarm sounds on a day when there is no fire
(a false alarm) is 1 in 100.

a) Your alarm goes off. What is the probability that your house is on fire?

Answer

𝑃(fire|alarm) = 𝑃(alarm|fire)𝑃 (fire)
𝑃 (alarm)

= 𝑃(alarm|fire)𝑃 (fire)
𝑃 (alarm|fire)𝑃 (fire) + 𝑃(alarm|¬fire)𝑃 (¬fire)

= 0.95 × 0.0001
0.95 × 0.0001 + 0.01 × 0.9999

= 0.0094

The probability of a fire if the alarm goes off is 0.94%.

b) Many people given this problem estimate the probability of the house being
on fire as close to 95%. Provide one possible explanation for this error.

Answer

People often confuse P(A|B) with P(B|A). In this case, such confusion
would lead them to conclude that P(fire|alarm)=P(alarm|fire)=95%. You
might also think of this as anchoring on the 95% and insufficiently adjust-
ing from there.
Alternatively, people sometimes act as though they have assumed uniform
priors: e.g. 50:50 as to whether a fire or not.
In that case:
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𝑃(fire|alarm) = 𝑃(alarm|fire)𝑃 (fire)
𝑃 (alarm)

= 𝑃(alarm|fire)𝑃 (fire)
𝑃 (alarm|fire)𝑃 (fire) + 𝑃(alarm|¬fire)𝑃 (¬fire)

= 0.95 × 0.5
0.95 × 0.5 + 0.01 × 0.5

= 0.9896

c) Express and solve this problem using natural frequencies.

Answer

• Your house will catch fire on 100 out of 1,000,000 days. (You could
choose any base number of days - I chose 1 million as gives round
numbers for the following items.)

• Your fire alarm will correctly detect a house fire on 95 of those days.

• You will have a false alarm on 9,999 out of the 999,900 days without
fire.

𝑃(fire|alarm) = 95
95 + 10000

= 0.0094

38.8 The law of small numbers

Lincoln observes performance by fund manager Neville. Neville may be a skilled,
mediocre or unskilled manager:

• A skilled fund manager has a 75% chance of beating the market each
quarter.

• A mediocre fund manager has a 50% chance of beating the market each
quarter.
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• An unskilled fund manager has a 25% chance of beating the market each
quarter.

Lincoln knows these odds.
The performance of a fund manager is independent from quarter to quarter.
Consider the model we used to examine behaviour involving a belief in the law
of small numbers whereby the decision maker acts as though the process has
the character of balls being drawn out of an urn without replacement. Lincoln
develops his beliefs using this model with 𝑁 = 12.
a) Lincoln thinks Neville is mediocre. What does Lincoln believe is the proba-
bility that Neville beats the market in the first quarter?

Answer

Lincoln thinks the realisation of Neville’s performance is like drawing from
an urn with 𝑁 = 12 balls. Because he believes Neville is mediocre, he
thinks half (6) of the balls are good-performance balls and half (6) are
bad-performance balls. The likelihood of drawing a good ball (𝐺) the first
quarter is 6/12.

̂𝑃 (𝐺) = 𝐺
𝑁

= 6
12

= 0.5

b) Neville beats the market in the first quarter. What does Lincoln believe is
the probability he does it again in the second quarter?

Answer

In Lincoln’s mind, the balls are not replaced once drawn. If Neville has
a good first quarter, Lincoln believes that only five good balls remain.
Therefore, Lincoln believes that the probability of Neville having a good
second quarter is 5/11.

̂𝑃 (𝐺𝐺|𝐺) = 𝐺 − 1
𝑁 − 1

= 5
11

c) Neville beats the market again. What does Lincoln believe is the probability
that he will do so in the third quarter?
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Answer

After two good quarters, Lincoln believes only four good balls remain.
Therefore, the probability of Neville having another good quarter is 4/10.

̂𝑃 (𝐺𝐺𝐺|𝐺𝐺) = 𝐺 − 2
𝑁 − 2

= 4
10

d) Lincoln observes Jill, who he believes is a skilled fund manager. What does
Lincoln believe is the probability of her having 10 consecutive periods of out-
performance?

Answer

Lincoln believes that in 12 quarters Jill will have nine quarters of out-
performance. As a result, he does not believe it is possible for her to have
ten consecutive periods of out-performance. After nine periods, only three
balls are left in the urn. None of those balls are good.

̂𝑃 (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺|𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) = 𝐺 − 9
𝑁 − 9

= 0
3

= 0

e) What psychological bias does Lincoln’s behaviour reflect? Explain.

Answer

Each time Neville has a good quarter, Lincoln thinks it is less likely that
Neville will have another. This is an example of gambler’s fallacy. Lin-
coln thinks that Neville’s sequence of pxerformances should be the typical
sequence of a mediocre fund manager, with the same number of good and
bad quarters. This leads Lincoln to expect bad quarters to be more likely
after a sequence of good quarters.
Similarly for Jill, Lincoln expects a string of success to correct itself and
her record to revert to the average for a skilled manager.
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38.9 Heuristics

For each of the following experiments from Tverksy and Kahneman (1974),
explain what heuristic may be leading to the belief or decision.
a) Tverksy and Kahneman (1974) write:

Subjects were shown brief personality descriptions of several individ-
uals, allegedly sampled at random from a group of 100 professionals-
engineers and lawyers. The subjects were askcd to assess, for each
description, the probability that it belonged to an engineer rather
than to a lawyer. In one experimental condition, subjects were told
that the group from which the descriptions had been drawn consisted
of 70 engineers and 30 lawyers. In another condition, subjects were
told that the group consisted of 30 engineers and 70 lawyers. The
odds that any particular description belongs to an engineer rather
than to a lawyer should be higher in the first condition, where there
is a majority of engineers, than in the second condition, where there
is a majority of lawyers. Specifically, it can be shown by applying
Bayes’ rule that the ratio of these odds should be (.7/.32), or 5.44,
for each description. In a sharp violation of Bayes’ rule, the subjects
in the two conditions produced essentially the same probability judg-
ments.

Answer

This behaviour might be explained by representativeness. Tverksy and
Kahneman (1974) write:

[S]ubjects evaluated the likelihood that a particular descrip-
tion belonged to an engineer rather than to a lawyer, by the
degree to which this description was representative of the two
stereotypes, with little or no regard for the prior probabilities
of the categories.
The subjects used prior probabilities correctly when they had
no other information. In the absence of a personality sketch,
they judged the probability that an unknown individual is an
engineer to be .7 and .3, respectively, in the two base-rate con-
ditions. However, prior probabilities were effectively ignored
when a description was introduced, even when this description
was totally uninformative.

b) Tverksy and Kahneman (1974) write:

Suppose one samples a word (of three letters or more) at random
from an English text. Is it more likely that the word starts with r
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or that r is the third letter? … [M]ost people judge words that begin
with a given consonant to be more numerous than words in which
the same consonant appears in the third position. They do so even
for consonants, such as r or k, that are more frequent in the third
position than in the first.

Answer

This behaviour might be explained by availability. Tverksy and Kahneman
(1974) write:

People approach this problem by recalling words that begin
with r (road) and words that have r in the third position (car)
and assess the relative frequency by the ease with which words
of the two types come to mind. Because it is much easier to
search for words by their first letter than by their third letter,
most people judge words that begin with a given consonant to
be more numerous than words in which the same consonant
appears in the third position.

c) Tverksy and Kahneman (1974) write:

Two groups of high school students estimated, within 5 seconds, a
numerical expression that was written on the blackboard. One group
estimated the product

8 × 7 × 6 × 5 × 4 × 3 × 2 × 1

while another group estimated the product

1 × 2 × 3 × 4 × 5 × 6 × 7 × 8

…
The median estimate for the ascending sequence was 512, while the
median estimate for the descending sequence was 2,250. The correct
answer is 40,320.

Answer

This behaviour might be explained by anchoring and adjustment. Tverksy
and Kahneman (1974) write:

To rapidly answer such questions, people may perform a few
steps of computation and estimate the product by extrapola-
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tion or adjustment. Because adjustments are typically insuffi-
cient, this procedure should lead to underestimation. Further-
more, because the result of the first few steps of multiplication
(performed from left to right) is higher in the descending se-
quence than in the ascending sequence, the former expression
should be judged larger than the latter.

d) Tverksy and Kahneman (1974) write:

In considering tosses of a coin for heads or tails … people regard the
sequence H-T-H-T-T-H to be more likely than the sequence H-H-H-
T-T-T … [or] … the sequence H-H-H-H-T-H.

Answer

This behaviour might be explained by representativeness. Tverksy and
Kahneman (1974) write:

People expect that a sequence of events generated by a ran-
dom process will represent the essential characteristics of that
process even when the sequence is short. …
[P]eople expect that the essential characteristics of the process
will be represented, not only globally in the entire sequence,
but also locally in each of its parts. A locally representative
sequence, however, deviates systematically from chance expec-
tation: it contains too many alternations and too few runs.
Another consequence of the belief in local representativeness
is the well-known gambler’s fallacy. After observing a long
run of red on the roulette wheel. for example, most people
erroneously believe that black is now due, presumably because
the occurrence of black will result in a more representative
sequence than the occurrence of an additional red.

38.9.1 Overconfidence

Consider the following three statements. Suppose that each statement is an
instance of overconfidence. For each statement name and define the form of
overconfidence that provides the best explanation for the students’ beliefs.

a) 90% of students believe they will score above the class average in the final
exam.
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Answer

Overplacement.
Overplacement is the erroneous relative judgement that we are better than
others.

b) 90% of students believe they will receive a high distinction.

Answer

Overestimation.
Overestimation is the belief that we can perform at a level beyond that
which we realistically can.

c) Arthur believes with 90% probability that he will score between 74% and
76% in the final exam.

Answer

Overprecision.
Overprecision is the tendency to believe that our predictions or estimates
are more accurate than they actually are.

38.9.2 Lethal events

When people are asked the frequency of lethal events, they are often inaccurate.
The following table lists those events most subject to under- or over-estimation
of the frequency.

Most overestimated Most underestimated
All accidents

Motor vehicle accidents
Tornadoes
Flood

All cancer
Fire and flames

Venomous bite or sting
Homicide

Diabetes
Stomach cancer

Stroke
Tuberculosis

Asthma
Emphysema

What heuristic could lead to this pattern of overestimation and underestima-
tion? Why?
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Answer

The most overestimated events tend to be vivid events that are often the
subject of news. The most underestimated are much less vivid and likely
receive less coverage.
This pattern could be driven by the availability heuristic. When using
the availability heuristic, people judge the frequency of events by the ease
with which instances of those events come to mind.
When asked to estimate the frequency of vivid events often in the news, in-
stances of those events will easily come to mind. The availability heuristic
will lead these events to be judged more probable.
Conversely, people will find it harder to call to mind those events which
are less vivid and newsworthy, leading them to judge those events as being
less frequent.
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Part VI

Game theory
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In many situations, your outcome depends on others’ behaviour. Their outcome
depends on your behaviour.
Similarly, your strategy will depend on your belief about others’ strategy. Their
strategy depends on their beliefs about your strategy.
Game theory studies this strategic interaction between players. We can solve
strategic problems using the tools of game theory.

Components of a game

A game has the following components:

• First, the players of the game. Most of the games we examine in these
notes involve two players.

• Second, the actions that each player can take; for example to contribute
to a common pool or to defect.

• Third, the strategies that comprise a complete contingent plan of action.
That is, for any given scenario or action by another player, a strategy
specifies the action to be taken by the player.

• Fourth, the information available to players. In these notes, we generally
assume perfect information.

• And finally, the payoffs. This comprises a complete summary of the value
to each player of each set of actions.

The players

In game theoretical analysis, we typically assume that the players are rational
optimisers who understand the game that they are playing. By rational, we
mean that the player is aware of their alternatives, forms expectations about
any unknowns, has preferences that conform to the axioms of completeness and
transitivity and they choose the best option using some optimisation algorithm.
We also assume that the players assume other players are also rational optimisers
who understand the game.
We weaken this assumption when we analyse behavioural game theory.

Types of games

There are many different types of games analysed in game theory. Some of the
delineations between these games are as follows.
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Cooperative versus non-cooperative games

First, games are often divided into cooperative and non-cooperative games.

In non-cooperative games, players are not allowed to negotiate binding con-
tracts. In cooperative games, players can negotiate binding contracts that allow
them to implement joint strategies.

In these notes, I will focus on non-cooperative games.

Simultaneous or sequential games

Second, games can involve simultaneous or sequential moves.

In a simultaneous move game, you make decisions without knowing the action
of your rival.

In sequential games, players make sequential decisions knowing the other
player’s action. We will examine both of these types of game in these notes.
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Chapter 39

Simultaneous-move
one-shot games

In a simultaneous-move one-shot game, you make decisions without knowing the
action of your rival. This can be interpreted as either players making decisions
at the same time or players making decisions before knowing the decisions of
their rivals.

39.1 The normal form

We usually write simultaneous move one-shot games in the “strategic” or “nor-
mal” form. In this form, all of the monetary or non-monetary outcomes are
represented in a matrix.

I will now illustrate the normal form of the game with a game called the pris-
oner’s dilemma.

39.1.1 The prisoner’s dilemma

The prisoner’s dilemma is a classic simultaneous-move one-shot game. A pair
of criminals have been captured following a crime. The police have sufficient
evidence to convict them of a minor crime (e.g. trespass), but insufficient evi-
dence to convict them of the major crime that has occurred (e.g. theft of the
crown jewels).

The police place each prisoner in a separate cell where they cannot communicate
with each other. The police then offer both prisoners a deal: confess and they
will let them go free despite the minor crime, but they will then have the evidence
required to give their criminal partner a massive sentence for the serious crime.
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If neither confesses, the police will have insufficient evidence to get a conviction
for the major crime, so they will both receive a short sentence for the minor
crime. If both confess, they will both get a longer sentence, but with some
reduction in sentence relative to if they didn’t confess.

The normal form of the game is as follows:

Prisoners A and B have two actions available: to confess and to stay silent. The
numbers in the matrix represent the payoffs from each combination of actions,
in this case, the number of years they will serve in prison. A higher number is
therefore a worse outcome. The left number in each cell of the matrix represents
the payoff to the row player, Prisoner A. The number on the right of each matrix
cell is the payoff to the column player, Prisoner B.

For example, if both Prisoner A and Prisoner B choose to confess, they each
receive a prison sentence of five years. If Prisoner A confesses and Prisoner B
remains silent, Prisoner A gets off without a prison sentence, whereas Prisoner
B gets twenty years.

Equipped with the normal form of the game, we can determine what each player
wants to do in response to each action of the other player.

For example, we can see that if Prisoner B confesses, Prisoner A can either
confess and receive five years in prison, or remain silent and receive 20 years in
prison. They would choose to confess.

We indicate the preferred action in response to another player’s action by circling
the relevant payoff. For example:
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If Prisoner B remains silent, Prisoner A could either confess and escape without
a sentence, or remain silent and receive a sentence of one year in prison. They
would prefer to confess.

We can then work through the same process for Prisoner B’s actions.

If Prisoner A confesses, Prisoner B can either confess and receive five years in
prison, or remain silent and receive 20 years in prison. They would choose to
confess.

If Prisoner A remains silent, Prisoner B could either confess, and escape without
a sentence, or remain silent, and receive a sentence of one year in prison. They
would prefer to confess.

Indicating this set of preferred actions in response to that of the other player
gives us this completed matrix.
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39.2 Dominant strategies

Before examining this matrix further, I will now introduce the concept of the
dominant strategy.

A strategy is dominant if it gives a higher payoff than every other strategy, for
every strategy that your rivals play.

A strategy is strictly dominant if it gives a strictly higher payoff than every
other strategy, for every strategy that your rivals play.

If you have a strictly dominant strategy, you should play it for sure.

In a dominant strategy equilibrium, all players choose a dominant strategy.

In the prisoner’s dilemma, both players have a dominant strategy to confess. No
matter what the other player does, confessing is better than remaining silent.

39.3 Nash equilibrium

Another important concept is the Nash equilibrium.

A set of strategies is a Nash equilibrium if every player is playing a best response
to their rivals’ strategies. No one has an incentive to change strategy.

A Nash equilibrium is self-enforcing and stable. If the players agree to play a
certain way, they’ll both do it. Unilateral deviations are not worthwhile.

The prisoner’s dilemma has a single Nash equilibrium: (Confess, Confess). Vi-
sually, where the preferred response of both players to the other player’s action
falls within the same cell, this indicates a Nash equilibrium.

39.4 Simultaneous-move one-shot game exam-
ples

In this part, I will show some examples of simultaneous-move one-shot games.

39.4.1 The driving game

Consider the following game between two players deciding what side of the road
to drive on. They can drive on the left or the right. If they both drive on the
left or right when they approach each other, they will successfully pass. If one
drives on the left and the other on the right, they will crash.
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What are the Nash equilibria?

If Driver 2 drives on the left, Driver 1 can either successfully drive on the left, or
drive on the right and crash. They would choose to drive on the left. If Driver
2 drives on the right, Driver 1 can either successfully drive on the right, or drive
on the left and crash. They would choose to drive on the right.

Similarly, if Driver 1 drives on the left, Driver 2 can either successfully drive
on the left, or drive on the right and crash. They would choose to drive on the
left. If Driver 1 drives on the right, Driver 2 can either successfully drive on the
right, or drive on the left and crash. They would choose to drive on the right.

We can see from the matrix that there are two Nash equilibria. The Nash
equilibria are (Left, Left) and (Right, Right). If both drivers are driving on the
left, neither has an incentive to change their strategy. If both drivers are driving
on the right, again, neither has an incentive to change.
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39.4.2 Matching pennies

The next game, called matching pennies, involves two players, Even and Odd,
who each have a penny. Each player must select one side of the penny and
simultaneously show the penny to the other player. If the pennies match, Even
wins. If they don’t match, Odd wins.

What are the Nash equilibria?

To determine this, we work through the matrix as we did in the previous exam-
ple.

If Odd shows heads, Even can either show heads and win, or show tails and
lose. They would choose to show heads. If Odd shows tails, Even can either
show tails and win, or show heads and lose. They would choose to show tails.

Similarly, if Even shows heads, Odd can either show tails and win, or show
heads and lose. They would choose to show tails. If Even shows tails, Odd can
either show heads and win, or show tails and lose. They would choose to show
tails.
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There are no pure-strategy Nash equilibria for this game. For any combination
of heads and tails, one of the players would want to change their choice.

There are what are called “mixed-strategy Nash equilibria” in this game, but
mixed-strategy equilibria are beyond the scope of this subject.

39.4.3 The stag hunt

Consider the “stag hunt game” between two players deciding what animal they
will hunt. Both hunters need to cooperate to catch the stag. They can catch a
hare by themselves, but it provides less meat.

What are the Nash equilibria?

If Hunter 2 hunts the stag, Hunter 1 can either hunt the stag and catch it, or
hunt the hare and catch it. They would choose to hunt the stag as it gives a
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payoff of 3 compared to 1. If Hunter 2 hunts the hare, Hunter 1 can either hunt
the stag and not catch it, or hunt the hare and catch it. They would choose to
hunt the hare as it gives a payoff of 1 compared to 0.

Similarly, if Hunter 1 hunts the stag, Hunter 2 can either hunt the stag and
catch it, or hunt the hare and catch it. They would choose to hunt the stag as
it gives a payoff of 3 compared to 1. If Hunter 1 hunts the hare, Hunter 2 can
either hunt the stag and not catch it, or hunt the hare and catch it. They would
choose to hunt the hare as it gives a payoff of 1 compared to 0.

The Nash equilibria are (Stag, Stag) and (Hare, Hare). On either pair of strate-
gies, neither player has incentive to change. It is an open question, however, as
to which Nash equilibrium might emerge if they were to play the game.

39.4.4 The public goods game

The final game I will consider in this part is the public goods game.

In this game, each participant is given an initial endowment.

Each participant secretly and simultaneously chooses how much of their endow-
ment they wish to contribute to a public pot.

The money in the public pot is multiplied by some amount and split evenly
between the players. Typically, the multiple applied to the pot is greater than
1, but less than the number of players.

For example, five players might each be given $10, with the pot doubled. Sup-
pose they each contribute $5 of their $10 endowment to the pot. The $25
contributed to the pot is multiplied by 2 to a total of $50. Each player then
receives $10 from the pot, giving them $15 in total.
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The public goods game

In Nash equilibrium in the public goods game, nobody transfers anything to the
pot. Any contributions are split between all players, so if there are more players
than the multiple, which is normally the case by design, contributions result in
a loss to that individual player.

Consider the previous game, but this time Player E contributes nothing. There
is then $20 in the pot, which is doubled to $40. The pot is then split equally
between the players, each receiving $8 from the pot. The result is that Player
E is better off having not contributed, ending with $18, compared to the $15
they would have received had they contributed $5 like the other players.
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The public goods game

The Pareto optimal result, however, is for all players to contribute their full
endowment and each receives back their multiplied contribution. However, the
Pareto optimal result is not stable, as each player has an incentive to defect and
contribute nothing.
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The public goods game
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Chapter 40

Sequential games

In sequential games, players make sequential decisions knowing the action of
the other player.

40.1 The extensive form

Sequential games can be shown in what is called the “extensive form” represen-
tation. The extensive form representation explicitly shows the timing of play.
Payoffs are represented in a game tree.
I will now illustrate the extensive form with a game called the centipede game.

40.1.1 The centipede game

This centipede game has six decision nodes. At each node, a player can “take”,
and end the game, or they can “pass”, increasing the total payoff. The other
player then has a move.
The numbers 1 and 2 along the top of the centipede represent the decision nodes
for two players. At the first node, player 1 has the choice to take or pass. If
player 1 passes, player 2 has the choice to take or pass, and so on. At the final
node, the game ends regardless of what player 2 chooses.
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The payoff when a player takes and ends the game is represented by the numbers
in the brackets. The first number is the payoff for player 1 and the second
number is the payoff for player 2. For example, if player 1 takes at the first
node, they receive a payoff of 1 and player 2 receives a payoff of 0. At the final
node, if player 2 passes they receive a payoff of 5 and Player 1 receives a payoff
of 6. If player 2 takes at that final node, they receive a payoff of 6 and Player
1 receives a payoff of 4.

40.2 Subgame perfect Nash equilibrium

Before examining this game, I will introduce the concept of a subgame perfect
Nash equilibrium.

A subgame is a part of a game that can be played as a game itself. It begins at
a single node and contains every successor node.

40.2.1 Solving the centipede game

For example, this final stage of the centipede game is a subgame.

As is this subset of the game.

A Nash Equilibrium is subgame perfect if every player plays the Nash Equilib-
rium in every subgame

We can solve for the subgame perfect Nash equilibrium of sequential games by
backward induction. To do that we solve for the decision nodes at the end of
the game first and then work our way back to the beginning of the game.
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In our centipede game, using backward induction, player 2 at the final node
will “take” for a payoff of 6 instead of passing for a payoff of 5. When marking
choices in a sequential game, it is often useful to mark the option taken by the
player, or that not taken, in addition to indicating the payoff they would receive.

At the node immediately before, player 1 will “take” for a payoff of 5 instead of
passing, given player 2 will then take, giving player 1 a payoff of 4.

Therefore, at the node before, player 2 will take for a payoff of 4 instead of
passing for a payoff of 3.

Therefore, at the node before, player 1 will take for a payoff of 3 instead of
passing for a payoff of 2.

Therefore, player 2 at the node before will take for a payoff of 2 instead of
passing for a payoff of 1.

And therefore, player 1 at the first node will take for a payoff of 1 instead of
passing for a payoff of 0.

There is a unique subgame perfect equilibrium for the centipede game: 𝑆1 =
(take, take, take) and 𝑆2 = (take, take, take), where 𝑆1 and 𝑆2 are the set of
strategies for player 1 and player 2 respectively.

In the subgame perfect Nash equilibrium of the centipede game, player 1 takes
at the first node.
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40.3 Sequential game examples

In this part, I will discuss some sequential games and their subgame perfect
Nash equilibria.

40.3.1 The ultimatum game

The first example is the ultimatum game.

The ultimatum game involves two players: the proposer and the responder.

The proposer is given a fixed amount of money 𝑚. They then offer a portion 𝑥
of the sum 𝑚 to the responder.

The responder can either accept or reject the offer. They make this decision
knowing the fixed amount 𝑚 held by the proposer and the offer 𝑥.
If the responder accepts, the responder receives the offer 𝑥 and the proposer
gets the remainder 𝑚−𝑥. If the responder rejects, both players receive nothing.

Figure 40.1: The ultimatum game

Below is the extensive form of the ultimatum game with 𝑚 = $10 and an
assumption that the offer must be a whole dollar amount. At the first node
is the proposer. They can choose to offer any dollar sum between $0 and $10.
Whatever the choice, the responder is at the next node. They can choose to
accept or reject the offer. The payoffs of each set of actions is indicated in
the brackets at the bottom of the game tree, with the first number being the
proposer’s payoff and the second number being the responder’s payoff.
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If we work through this game by backward induction, we can see that for any
non-zero amount, the responder will accept the offer. The only time they might
not accept is where the offer is 0, but they still might.

Given this, the proposer will offer $0 or $1 only.

We can say that there are two subgame perfect Nash equilibria. The first is for
the proposer to offer $1 and the responder to accept if offered $1 and reject if
offered $0. The other (weak) subgame perfect Nash equilibrium is an offer of $0
and acceptance.

More generally, game theory makes a clear prediction on the outcome of the
ultimatum game. If the players have monotonic preferences - that is, more is
better - the responder accepts any 𝑥 > 0 (and possibly even if 𝑥 = 0) and the
the proposer offers the smallest amount the proposer can offer.

Where the strategy space is continuous (that is the offer could always be made
smaller) the only subgame perfect Nash equilibrium is for the proposer to offer
$0 and the receiver to accept.

40.3.2 The dictator game

The next example is the dictator game.

In the dictator game, the dictator is given a fixed amount of money 𝑚. They
then offer a portion 𝑥 of the sum 𝑚 to the receiver. The game then ends.
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Figure 40.2: The dictator game

Exchange is unilateral. Receivers have an empty strategy set.

The standard game theory prediction is no interaction whatsoever. The dictator
maximises their payoff by keeping all of the endowment themselves, receiving
payoff 𝑚 (which is bolded).

Figure 40.3: The dictator game solved

40.3.3 The trust game

The final example is the trust game.

The trust game involves two players: a sender and a receiver

Both the sender and receiver are given an initial sum 𝑚.

The sender sends a share 𝑥 of their 𝑚 to the receiver. This amount 𝑥 is often
called the investment.

Before the investment is received by the receiver, it is multiplied by some factor
𝑘.
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Therefore, the receiver receives 𝑘𝑥.
The receiver then returns to the sender some share 𝑦 of their total allocation
𝑚 + 𝑘𝑥.
The final outcome is the sender has 𝑚 − 𝑥 + 𝑦 and the receiver has 𝑚 + 𝑘𝑥 − 𝑦.
We can represent these payoffs as:

(𝑚 − 𝑥 + 𝑦, 𝑚 + 𝑘𝑥 − 𝑦)

The extensive form of the game is as follows.

Figure 40.4: The trust game

Here is a numerical example.

Suppose the sender and receiver are given an initial sum of $10.

The sender decides to send $5 of their $10 to the receiver.

This is multiplied by a factor of 3. Therefore, the receiver receives $15 and now
has $25.

The receiver then returns to the sender $7.50 of their $25.

The final outcome is (10 − 5 + 7.50, 10 + 15 − 7.50) = (12.50, 17.50).

Figure 40.5: The trust game

If both receivers have utility function 𝑢(𝑥) = 𝑥 the only subgame-perfect equilib-
rium is that the receiver will keep all their money, so the sender sends nothing.
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We can see this by backward induction. The receiver can either return 𝑦 for a
payoff of 10+3𝑥−𝑦 or return 0 for a payoff of 10+3𝑥. The receiver will return
0.

One way to think about this problem is that the receiver is effectively playing
a dictator game.

Working backwards, the sender therefore has a choice between sending 𝑥 for a
payoff of 10 − 𝑥 or sending 0 for a payoff of 10. The sender will send 0.

Figure 40.6: The trust game

Relative to the Pareto optimal outcome whereby the sender’s full endowment is
tripled and they receive a positive return on their investment, both players are
worse off under the equilibrium outcome.
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Chapter 41

Asymmetric information

To date in this section on game theory, I have assumed perfect information.
That is, all players know the rules of the game, the available actions and the
payoffs from each set of actions.

I will now explore two examples where we relax this assumption and allow the
parties to have different information. However, we will retain the assumption
of rational behaviour.

41.1 The market for lemons

This example draws on the work of Akerlof (1970).

An agent decides to buy a used car. Price 𝑝 is fixed and quality is unobservable.

Suppose there are two types of cars: good cars and lemons. A car is good with
probability 𝑞 and a lemon with probability 1 − 𝑞.
The seller knows the type. To the seller, good cars are worth $10,000 and lemons
$5,000.

To potential buyers, good cars are worth $15,000 and lemons $7,500.

Before the purchase, the buyer knows the types of cars in the market and the
frequency of each. They only discover the type of car, however, after the pur-
chase.

Given both car types are worth more to buyers than sellers, there should exist
advantageous trades for both parties for both types of car. Selling is an efficient
solution.

But what happens?
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Let 𝜇 be the probability that a car that is sold is good. If sellers are willing to
sell their good cars, 𝜇 = 𝑞. If not, 𝜇 = 0.
Therefore, the expected value of a car to a buyer is:

𝐸 = 𝜇15000 + (1 − 𝜇)7500 = 7500 + 7500𝜇

Hence, the buyer will be willing to pay up to 𝑝 = 7500 + 7500𝜇.
Given the value of each type of cars to sellers, they will sell a lemon if 𝑝 ≥ 5000
and a good car if 𝑝 ≤ 10000.
Combining the conditions for the buyer and seller, a lemon will be sold if the
price lies between the minimum required by the seller for the lemon and the
maximum the buyer is willing to pay for the lemon. That is:

5000 ≤ 𝑝 ≤ 7500 + 7500𝜇

This relationship holds regardless of the value of 𝜇, so the seller will always be
willing and able to sell the lemon.

They will be able to sell the good car if:

10000 ≤ 𝑝 ≤ 7500 + 𝜇7500

This relation can only hold if 𝜇 ≥ 1/3.
Assuming risk neutral buyers, we are left with two possible equilibria.

If 𝑞 ≥ 1/3, sellers sell both types of cars:

𝜇 = 𝑞 ≤ 1/3 → 10000 ≤ 𝑝∗ ≤ 7500 + 𝜇7500

If 𝑞 < 1/3, sellers sell only lemons:

𝜇 = 0 → 5000 ≤ 𝑝∗ ≤ 7500

Generalising what is happening here:

1. When buyers cannot observe product quality, sellers have an incentive to
pass off lemons as good cars.

2. Rational buyers expect this seller behaviour and they lower their willing-
ness to pay.

3. Sellers cannot sell good cars at high prices even though buyers would be
willing to pay high prices for good cars.
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4. At the lower prices, sellers only offer to sell lemons.

Information asymmetry is sufficient to result in a market failure even if the
agents are rational.

41.2 The winner’s curse

The second example involves a phenomenon called the winner’s curse.

The winner’s curse occurs in the context of common-value auctions.

A common-value auction is an auction in which the item for sale has the same
value to all the bidders.

Examples include stocks, which all have one value, and oil, where the amount
of oil in a tract is the same for all oil companies.

Common-value auctions contrast with private-value auctions in which bidders
have different valuations for the item for sale. This typically occurs where the
item’s valuation reflects bidder tastes, such as art.

The winner’s curse is a phenomenon in common value auctions whereby the
winner tends to experience a loss.

Petroleum engineers invented the term in discussing why oil companies in the
Gulf of Mexico had poor results in the 1950s through 1970s. Oil companies in
the Gulf acquired drilling rights through auctions. Their rights tended to lead
to losses or less in profits than expected. In hindsight, the winning bids were
unreasonably high.

The winner’s curse is widely documented in experimental settings and has been
observed in corporate environments.

41.2.1 Winner’s curse example

I will now walk through a numerical example of the winner’s curse.

Company 1 and company 2 hire a geologist to estimate the value of an oil
field. The honest geologist of each company privately reports their estimated
valuation to the company. Company 1 learns 𝑣1 and company 2 learns 𝑣2.

𝑣1 and 𝑣2 are uniformly distributed between $0 and $100 and independent.

Assume the true value of the oil field is the mean of 𝑣1 and 𝑣2:

𝑉 = 𝑣1 + 𝑣2
2
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The two companies simultaneously bid for the field in a first-price auction. The
highest bid wins and pays their bid.

What should a company bid in this auction?

Suppose both companies bid the private valuation they receive. Company 1
receives 𝑣1 = 50, bids $50 and wins.

If they win, 𝑣1 = $50 > 𝑣2.

On average, in this state of the world company 2’s signal is $25 (due to the
uniform distribution). The average value of the tract is therefore:

̄𝑉 = (50 + 25)/2 = $37.50

The result is that company 1 has, on average, profit of $37.50−$50 = −$12.50.
That is, a loss of $12.50.

Company 1 now decides to change strategy and bid less than the valuation they
receive. What if 𝑣1 = 50 and company 1 bids $37.50 instead. We will assume
that company 2 continues to bid 𝑣2 and company 1 wins.

If company 1 wins, $37.50 > 𝑣2.

On average, in this state of the world, company 2’s signal is $18.75 (due to the
uniform distribution). The average value of the tract is therefore:

(50 + 18.75)/2 = $34.37

Company 1’s profit is, on average, $34.37 − $37.50 = −$3.13.
Company 1 now decides to bid only half the valuation. What if 𝑣1 = $50 and
company 1 bids $25. We again assume company 2 bids 𝑣2 and company 1 wins.

If company 1 wins, 25 > 𝑣2.

On average, in this state of the world company 2’s signal is $12.50 (due to the
uniform distribution), so the average value of the tract is (50+12.50)/2 = $31.25.
Company 1’s profit is $31.25 − $25 = $6.25 on average. However, they will win
only 25% of the time.

This analysis also has a complication in that it does not account for the fact
that company 2 is also a strategic player. We assumed company 2 bids 𝑣2, but
as for company 1, this strategy would lead to an expected loss for company 2.

So what does each firm do at equilibrium?

As each firm will have the same strategy at equilibrium, we can solve for com-
pany 1 assuming company 2 does the same strategy in response. At equilibrium,
we can also assume that each company will have an expected profit of zero as
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each company would otherwise have an incentive to change their bid to gain a
share of the positive profit.

Company 1 will win if 𝛿𝑣1 > 𝛿𝑣2; in other words, if 𝑣1 > 𝑣2. On average, in this
state of the world company 2’s signal is 0.5𝑣1 (due to the uniform distribution),
so that the average value of the tract is (𝑣1 + 0.5𝑣1)/2 = 0.75𝑣1.

Company 1’s profit is:

𝜋1 = 0.75𝑣1 − 𝛿𝑣1 = (0.75 − 𝛿)𝑣1

Profit is zero when 𝛿 = 0.75. The Nash equilibrium is that both parties bid 75%
of their private valuation.

In summary, bidding based purely on your own valuation fails to take into
account that you only win if the other player’s signal is low.

Alternatively, we may say that winning the auction is bad news regarding the
value of the field. This is the winner’s curse.

Because of the winner’s curse, the Nash equilibrium is to bid more conservatively.

The mistake that oil companies make is ignoring or underestimating the winner’s
curse. If an oil company wins an auction, it’s likely because its geologists have
the highest estimates of the field’s value. But if all other geologists have lower
estimates of the value, the company’s geologists have probably overestimated
it.
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Chapter 42

Strategic moves and
commitment

42.1 Chicken

Consider the following game of chicken. Two players are driving toward each
other. Whoever swerves first loses. If neither swerves, they crash and die.

There are two pure-strategy Nash equilibria: (Straight, Swerve) and (Swerve,
Straight). If the other player swerves, they want to go straight. If the other
player goes straight, they want to swerve.
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Now consider a new scenario.

As they are driving toward each other, Player A rips the steering wheel out of
their car and throws it out the window. They will now drive straight no matter
what Player B does.

This is effectively a new game. What is the Nash equilibrium?

The Nash equilibrium is (Straight, Swerve). Player A wins the game of chicken.
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42.2 Strategic moves

The option to commit to a course of action, as in this game of chicken, is an
example of a strategic move.
A strategic move changes the game you are playing from a single-stage game
to a two-stage game. In the first stage, you make your strategic move. In the
second you play the original game.
Strategic moves come in two forms:

• Unconditional strategic moves, which we call commitments

• And conditional strategic moves, which we call threats and promises

42.2.1 Unconditional strategic moves

An unconditional strategic move is a commitment. For example, removing your
steering wheel in chicken is a commitment.
The commitment needs to be observable and irreversible:
If your opponent cannot observe your commitment, you can claim to have made
the commitment when you have not.
If your commitment is reversible, the game remains as if you had never made
it.

42.2.2 Conditional strategic moves

A conditional strategic move involves specifying to your opponent how you will
respond to each move.
A threat involves specifying negative consequences to the other player if they
do not play as you wish. ”If you don’t clean your room, you won’t get dessert.”
A promise involves specifying positive consequences to the other player if they
do play as you wish. “If you clean your room, you can have dessert.”

42.2.3 Credibility of strategic moves

Commitments, threats and promises only achieve their objective if they are
credible. That is, they only work if the other player believes they will be carried
out as stated.
Sticking to a commitment and carrying out a threat or a promise typically
reduces the possible actions of the player. If the proposer loses too much from
carrying out a threat or promise, they will not carry it out.
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42.2.4 Example

Here is an example.

You threaten to complain about poor service by a company. Complaining is
costly.

Figure 42.1: Complaining is costly

We work through this problem by backward induction. At the final node for
the customer, they can complain for a payoff of -1 or not complain for a payoff
of 1. They will not complain.

The company, therefore, has a choice between providing good service for a payoff
of 1 or bad service for a payoff of 2. They will provide bad service. The company
has the same payoff for bad service regardless of the presence of the threat to
complain as the threat is not credible.

For the customer’s initial choice of whether to threaten to complain, it does not
matter either way. Regardless of their threat, they receive bad service.

The result is two sub-game perfect Nash equilibria: (Threatens to complain,
Bad service, Does not complain) and (No threat, Bad service).
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Figure 42.2: Complaining is costly
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Chapter 43

Game theory exercises

43.1 The cold war

The year is 1964 and the Soviet Union and the United States are in the midst
of the cold war.

Suppose each player is considering whether they should act aggressively (hawk)
or peacefully (dove). If one plays hawk while the other plays dove, they win the
cold war. If both play hawk, there is a nuclear armageddon.

The payoffs (𝑥, 𝑦) of each option for the Soviet Union and United States is as
follows:

a) What is the Nash equilibrium of this game? What other game does this
resemble?
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Answer

The preferred action in response to the action of the other player are
indicated in the below diagram.

The two Nash equilibria are (Hawk, Dove) and (Dove, Hawk).
This game resembles chicken. Each player wants to win, but if neither
swerve, there is a catastrophic outcome for both.

b) In the movie Dr Strangelove, the Soviet Union created a doomsday machine
that would detonate automatically if there was a nuclear strike. The fallout
would render the earth uninhabitable. The doomsday machine could not be
deactivated and would explode if any attempt was made.

Explain how the doomsday device could act as a commitment device?

Answer

By removing dove as a response to hawk, the game effectively changes to
the following:

The Soviet Union can now credibly signal that it will respond to hawk
with hawk. This leads to a single Nash equilibrium: (Hawk, Dove).
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c) In the movie, the Soviet Union failed to inform the United States of the exis-
tence of the device. How could this failure to inform undermine its effectiveness
as a commitment device?

Answer

A commitment will only be effective if it is both observable and irre-
versible. While the doomsday machine is irreversible, by not being ob-
servable it will not change the response of the United States. The United
States will think they are playing the game analysed in part a), not that
in part b).

43.2 Hiring

Robyn is hunting for a new employee. Robyn’s company uses highly-technical
equipment and needs to invest heavily in training the new employee. If the new
employee leaves straight after training, Robyn’s company will suffer a net loss
from the employee. If the employee stays long-term, they will have a large gain.

Robyn approaches Sean and asks if he is interested in a long-term role with the
company.

Sean is interested in the training as he could use it to boost his career, but
sees less benefit in staying long-term. He considers whether he should say he is
interested or not.

The extensive form of the game is laid out below, with the payoffs (𝑥, 𝑦) being
for Robyn and Sean respectively.

a) Will Robyn offer the position to Sean?
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Answer

We work through the problem by backward induction.
Sean can get 2 by leaving after training or 1 by staying. He leaves after
training.
When considering whether he will state that he is interested, he could get
2 for stating he is interested (as he will later leave) versus nothing for
saying he is not interested. He states he is interested.
Robyn compares the -1 she gets for hiring Sean (as he will leave) with the
zero for no offer. She does not make an offer.

The subgame-perfect equilibrium is (No offer; State interested, Leave after
training).

b) What sort of strategic move could help John? What could make the move
credible?

Answer

One option is to sign a binding contract with penalties if he leaves early.
Any penalty greater than -1 would make staying more attractive.
A contract is both observable and irreversible (at least without mutual
agreement).

43.3 Investment

Linda is looking for investment opportunities. She identifies a promising crypto-
based start-up created by an Marco. Marco is looking for seed funding.

Linda can invest $10.

If Linda invests, her investment will triple in value. Marco can then decide to
either shut down the start-up and keep the $30 or maintain the start-up in the
market and pay a $15 dividend to each of Linda and himself.
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If Linda does not invest, Linda keeps the $10. The start-up gets $0.

a) Draw the extensive form representation of the above sequential game.

Answer

b) What is the equilibrium of this game if Linda and Marco are purely self-
interested?

Answer

Marco will shutdown (payoff 30 versus payoff of 15), so Linda will not
invest (payoff of 10 versus payoff of zero).

43.4 War

Two city states, Atlantis and El Dorado, are divided by a body of water. In the
middle is an island that both states claim sovereignty over.

To establish their claims, both states have built a bridge to the island. Atlantis
then sent troops to the island.
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El Dorado is deciding whether to attack Atlantis’s troops to reclaim the island
or to concede.
If El Dorado attacks, Atlantis need to decide whether to defend against the
attack or to retreat back across the bridge.
If El Dorado attacks and Atlantis defends, both countries will suffer large losses.
These decisions and the payoffs (𝑥, 𝑦) from each decision for El Dorado and
Atlantis respectively are as follows.

a) What is the subgame-perfect equilibrium of this game?

Answer

By backward induction, Atlantis would prefer to retreat (payoff of 2) com-
pared to fighting (payoff of 1). El Dorado then has a choice between
attacking (payoff of 3) and conceding (payoff of 2). El Dorado attacks.

The subgame-perfect equilbrium is (Attack, Retreat).

b) An adviser to the Atlantis army suggests that they burn the bridge behind
them to remove the option of retreat.
Draw the new extensive form game that would emerge if Atlantis had the option
of the burning the bridge. What is the subgame-perfect equilibrium?
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Answer

The new game is as follows (maintaining the payoffs as 𝑥, 𝑦 for El Dorado
and Atlantis respectively):

If we work through this game by backward induction, starting with the
upper branch:

• Atlantis would prefer to retreat (payoff of 2) compared to fighting
(payoff of 1).

• El Dorado would prefer to attack (payoff of 3) compared to conceding
(payoff of 2).

For the lower branch:

• El Dorado would prefer to concede (payoff of 2) compated to attack
(payoff of 1).

For Atlantis’s final decision, they would prefer to burn (payoff of 3) com-
pared to not burning (payoff of 2).
Atlantis burns the bridge.
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The subgame-perfect equilibrium is (Burn, Retreat; Attack, Concede).

43.5 Buying a car

Hayley wants to buy a car. The used-car salesman can sell her a good car (for
which he earns a small profit) or a lemon (for which he earns a large profit).

The payoffs (x,y) for each decision are indicated in the game tree below, with 𝑥
being the Hayley’s satisfaction and 𝑦 being the salesman’s profit.

a) Assume the salesman only cares about his profit. What would the salesman
do if Hayley chooses to purchase? Why?
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Answer

The salesman will compare payoffs of 8 for selling a lemon and 5 for selling
a good car. He will choose to sell a lemon.

b) Given the anticipated choice of the salesman, would Hayley purchase the car?
Why?

Answer

Hayley will compare a payoff of 0 for no purchase and a payoff of -1 for
buying a car that will be a lemon. She chooses not to purchase.

c) Suppose Hayley can take legal action if she is sold a lemon. If Hayley is
successful in court, she will be refunded the purchase price but would suffer a
cost of -5 due to the effort involved. Would this change the outcome? Why?

Answer

Working by backward induction, Hayley has a choice between taking legal
action for a payoff of -5 or not complaining for a payoff of -1. She will not
complain.
The rest of the game plays out as per questions a) and b). There is no
change to the outcome as she cannot commit to complain in advance. The
threat to take legal action is not credible.

d) Suppose Hayley has a reputation of being quick to anger and always carrying
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out her threats. Suppose Hayley would experience satisfaction of +6 from taking
legal action (in addition to the effort cost of -5). The salesman knows this and
believes it to be a credible commitment. Would this change the outcome? Why?

Answer

Hayley now has a choice between a payoff of 1 by taking legal action and
a payoff of -1 for accepting the lemon. She would take legal action.
The salesman now has a choice between a payoff of 0 for selling the lemon
(as Hayley takes legal action and the sale is refunded) and 5 for selling a
good car. He sells the good car
Hayley now has a choice of a payoff of 0 for not purchasing a car, and 5
for purchasing. She makes the purchase and gets a good car.
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Part VII

Behavioural game theory
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In our analysis of game theory, I assumed rational agents in that they use all
available information and can successfully determine their best action given
their opponent’s (also rational) action.

But what if agents have limited rationality or vary in their rationality?

In this part, I will examine several departures from rationality.

The first is level-k thinking, in which the agents are assumed to have a certain
level of reasoning. For example, a level-0 agent would choose an action randomly.
A level-1 agent would assume that the opponent is level-0 and choose the best
response to that. A level-2 agent would assume that the opponent is level-1 and
choose the best response to that. And so on. The players try to be one step
ahead of their opponents.

The second departure involves the degree to which the players account for asym-
metric information. We consider what happens if players act as though everyone
has the same information or if they fail to appreciate the informational advan-
tage they have relative to less-informed agents.

The third departure involves emotions. We consider the role of emotions in
enabling players to commit to courses of action that they otherwise could not
credibly stick with.

349



Chapter 44

Level-k thinking

The idea behind level-k thinking is that a player forms an expectation of what
others will do and tries to be “one step ahead”.

That is, a level-k player plays the best response to level-(k-1) players.

Level-0 players do not engage in strategic thinking. This is usually modelled as
randomisation across all strategies.

Level-1 players assume other players are level-0 and act optimally conditional
on this assumption.

Level-2 players assume other players are level-1 and act optimally conditional
on this assumption.

And so on.

44.1 Examples

44.1.1 The beauty contest

To understand level-k thinking, consider the following thought experiment from
Keynes (1936).

[P]rofessional investment may be likened to those newspaper com-
petitions in which the competitors have to pick out the six prettiest
faces from a hundred photographs, the prize being awarded to the
competitor whose choice most nearly corresponds to the average
preferences of the competitors as a whole; so that each competi-
tor has to pick, not those faces which he himself finds prettiest,
but those which he thinks likeliest to catch the fancy of the other
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competitors, all of whom are looking at the problem from the same
point of view. It is not a case of choosing those which, to the best
of one’s judgment, are really the prettiest, nor even those which av-
erage opinion genuinely thinks the prettiest. We have reached the
third degree where we devote our intelligences to anticipating what
average opinion expects the average opinion to be. And there are
some, I believe, who practise the fourth, fifth and higher degrees.

This thought experiment has since been developed into a game, the p-beauty
contest (Moulin (1986)).
In the p-beauty contest, each of 𝑛 players pick a number 𝑦 ∈ [0, 100].
The winner is the player whose chosen number is closest to the mean of all the
chosen numbers ( ̄𝑦) multiplied by a parameter 𝑝. That is, the winner is the
player with their chosen number closest to 𝑝 ̄𝑦.
𝑝 is typically chosen such 0 ≤ 𝑝 ≤ 1, with 𝑝 = 1/2 and 𝑝 = 2/3 common.
How might level-k players play this game?
Suppose 𝑝 = 2/3.
A level-0 player does not think strategically. We will have the level-0 player
randomly select a number between 0 and 100.
The level-1 player will play the best response to level-0 players. If level-0 players
select across the interval [0, …, 100], the best response is:

𝑦1 = 2
3 ̄𝑦 = 2

3 × 50 = 33.3

The level-2 player will play the best response to level-1 players. If all other
players are level-1 and select 33.3, the best response is:

𝑦2 = 2
3 ̄𝑦 = 2/3 × 33.3 = 22.2

The level-3 player will play the best response to level-2 players. If all other
players are level-2 and select 22.2, the best response is:

𝑦3 = 2
3 ̄𝑦 = 2/3 × 22.2 = 14.8

And so on.
The following charts come from Nagel (1995), with 𝑝 = 1/2 and 𝑝 = 2/3. The
charts show the distribution of chosen numbers in the p-beauty contest.
The chart with 𝑝 = 2/3 spikes at 22.2 and 33.3, suggesting players are playing at
level-2 and level-1, respectively. This matches with other experimental evidence
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on the p-beauty game, with few level-0 players. Most are level-1, level-2 and
level-3.

(a) 𝑝 = 1/2 (b) 𝑝 = 2/3

Figure 44.1: Choices by players of the p-beauty game

The lab evidence doesn’t necessarily imply that level-k is the “right model”.
Data and theory appear to match, but it is hard to know whether this is how
subjects are thinking.

Finally, it is worth noting that in the Nash equilibrium, each player picks 0.
This is because the best response to all other players picking 0 is to pick 0. For
any higher number, everyone has an incentive to lower their choice. However, if
playing against level-k players, selecting 0 is not the best approach.

44.1.2 The assignment game with level-k thinking

Let’s consider another example of level-k thinking involving a game called the
assignment game.

Each player needs to decide if they will work or shirk. If they both work, they
receive a good payoff. They receive an ever better payoff, however, if they shirk
while the other works.
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Working through the payoffs for each player, if player B works, player A is
better off shirking, receiving payoff of 9. If player B shirks, player 1 is better off
working, receiving payoff of 1. If player A works, player 2 is better off shirking,
receiving payoff of 9. If player A shirks, player B is still better off shirking,
receiving payoff of 0.

There is a unique Nash equilibrium (work, shirk), with shirk the dominant
strategy for Player B.

Consider, however, if instead of fully rational agents, we have level-k thinkers
playing the game.

In this case, the outcome of the game will depend on the level of thinking of
each player.

If both players are level-0, they will each play randomly.

At level-1, each player will play the best response to level-0 players. Each player
determines this by calculating their best response to the random strategy of the
other player.

For player A, their expected payoffs are calculated using the 50% probability
with which player B could play each action.

The expected payoff from playing work is:

1
2 × 7 + 1

2 × 1 = 4

The expected payoff from playing shirk is:

1
2 × 9 + 1

2 × 0 = 4.5

A level-1 player A chooses to shirk.

For player B, their expected payoff from playing work is:

1
2 × 4 + 1

2 × −1 = 1.5
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Their expected payoff from playing shirk is:

1
2 × 9 + 1

2 × 0 = 4.5

A level-1 player B also chooses to shirk.

If a player has a dominant strategy, they discover it at 𝑘 = 1. Any level-k
thinker will always uses the dominant strategy for 𝑘 ≥ 1. In that case, we know
that any player B with 𝑘 ≥ 1 will shirk.

What if each player is level 2?

Player A calculates their best response to a level-1 player B. A level-1 player
B always plays shirk. Player A’s best response to shirk is to work. The level-2
player A works.

Although we know a level-2 player B will shirk as as shirk is their dominant
strategy, we can show this by considering their best response to a level-1 player
A. A level-1 player A always plays shirk. Player B’s best response to shirk is to
shirk. The level-2 player B shirks.

At a certain level of thinking, the players will discover the Nash equilibrium.
Here, they have discovered it at level-2 thinking. For any higher level of thinking,
they will remain at the Nash equilibrium. That is, if players endowed with level
𝑘 = 𝑘̄ rationality play Nash, all players with 𝑘 > 𝑘̄ play Nash.

Level-k Player A Player B
𝑘 = 0 Random Random
𝑘 = 1 Shirk Shirk
𝑘 = 2 Work Shirk
𝑘 = 3 Work Shirk
𝑘 = 4 Work Shirk

44.1.3 Centipede game

Another example of level-k thinking is the centipede game.

This centipede game has six stages. At each stage, a player can “take” and end
the game or they can “pass”, increasing the total payoff. The other player then
has a move.

The numbers 1 and 2 along the top of the centipede represent the decision nodes
for two players. At the first node, player 1 has the choice to take or pass. If
player 1 passes, player 2 has the choice to take or pass, and so on. At the final
node, the game ends regardless of what player 2 chooses.
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The payoff when a player takes and ends the game is represented by the numbers
in the brackets. The first number is the payoff for player A and the second
number is the payoff for player B.

There is a unique subgame perfect equilibrium for the centipede game: 𝑆1 =
(take, take, take) and 𝑆2 = (take, take, take), where 𝑆1 and 𝑆2 are the set of
strategies for player A and player B respectively. We solve for this in Sec-
tion 40.2.1.

What do people do when playing the centipede game in the lab?

People tend to pass until a few stages before the end (depending on the length of
the centipede) and then take. They do not play the Nash equilibrium strategy.

Can level-k thinking provide insight into this behaviour?

Suppose a level-0 player passes until the end. They are possibly lucky if they
are player A playing against another level-0 player.

A level-1 player B would take at (4,6) as the level-0 player A would pass until
then. A Level-1 player A would be planning to take (6,5) at the end as they
believe the level-0 player B will keep passing.

A level-2 player B would plan to take at the final stage (4,6) as they believe
the level-1 player A passes. A level-2 player A would take the payoff at (5,3) as
they believe a level-1 player B would take at (4,6).

A level-3 player B would plan to take at (2,4) as they believe the level-1 player
A will take at (5,3). A level-3 player A would plan to take at (5,3) as they
believe a level-2 player B would take at (4,6).

And so on.

44.1.4 A military attack

An army from the North is about to attack the South.

The North can attack one of two cities: Hobart or Launceston. Launceston is
easier to attack as it is closer.

The South needs to decide which city it will plan to defend.

If the North attacks an undefended city, it will win. The South can repel any
attack on a city it has chosen to defend.
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The expected payoffs for each combination of actions are as follows, with the
payoff (𝑥, 𝑦) being the payoffs for the North and South respectively.

We determine the pure-strategy Nash equilibria by considering the best response
of each player to each of the other player’s strategies.

If the South defends Hobart, North can choose Hobart for a payoff of -1 or
Launceston for a payoff of 4. Launceston is the best response.

If the South defends Launceston, North can choose Hobart for a payoff of 4 or
Launceston for a payoff of 0. Hobart is the best response.

If the North attacks Hobart, South can defend Hobart for a payoff of 4 or
Launceston for a payoff of 0. Hobart is the best response.

If the North attacks Launceston, South can defend Hobart for a payoff of 0 or
Launceston for a payoff of 4. Launceston is the best response.

There is no pure-strategy Nash equilibrium. For any combination of choices,
one of the armies has an incentive to change their choice.

Suppose the commanders of the North and South are level-k thinkers.

If they were level-0, both would choose Hobart or Launceston with equal prob-
ability.
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What would each player do if they were a level-1 thinker?

A level-1 thinker assumes that the other player is a level-0 thinker. Each level-1
thinker plays the optimal strategy on this assumption.

A level-1 North plays the optimal strategy against a level-0 South. A level-0
South plays Hobart or Launceston with equal probability. The payoffs to North
from each option are:

𝑈𝑁(Hobart) = 0.5 × −1 + 0.5 × 4 = 1.5

𝑈𝑁(Launceston) = 0.5 × 4 + 0.5 × 0 = 2

North attacks Launceston.

𝑈𝑆(Hobart) = 0.5 × 4 + 0.5 × 0 = 2

𝑈𝑆(Launceston) = 0.5 × 4 + 0.5 × 0 = 2

South is indifferent between defending Hobart and Launceston. They can choose
either.

What would each player do if they were a level-2 thinker?

A level-2 thinker assumes that the other player is a level-1 thinker. Each level-2
thinker plays the optimal strategy on this assumption.

A level-2 North knows that the level-1 South is indifferent between defending
Hobart and Launceston. If North assumes that South will defend each with
equal probability, the payoffs to North from each option are:

𝑈𝑁(Hobart) = 0.5 × −1 + 0.5 × 4 = 1.5

𝑈𝑁(Launceston) = 0.5 × 4 + 0.5 × 0 = 2

North attacks Launceston.

A level-2 South knows that the level-1 North attacks Launceston. The South
defends Launceston for payoff of 4 (rather than Hobart for payoff of 0).
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Chapter 45

Asymmetric information
and the curse of knowledge

We saw earlier in our examination of the market for lemons and the winner’s
curse that asymmetric information can cause market failures even if agents
are fully rational. However, the rational agents account for the information
and behaviour of others and as a result, behave optimally despite that market
imperfection.

There is substantial empirical evidence that people do not behave in this way.

For example, people tend to underestimate the extent to which informational
differences drive others’ behaviour. They often act as if others have the same
information set that they do. Where an agent has information that another
doesn’t, this phenomenon is known as the curse of knowledge.

Further, better-informed agents often fail to take advantage of their informa-
tional advantage against less-informed agents because they don’t understand
the link between information and behaviour.

45.1 The curse of knowledge

The idea behind the curse of knowledge is that better-informed agents should
ignore the additional information they hold when predicting the actions of less-
informed agents. Experimental evidence shows that people are unable to ignore
their private information even when it is in their interests to do so.

For example, Newton (1990) had students participate in an experiment in one
of two roles: “Tapper” and “Listener”.
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Tappers received a list of 25 well-known songs and were asked to “tap out” the
rhythm of one of the songs.

Listeners tried to identify the song based solely on the taps.

Tappers predicted that listeners would identify 50% of the songs.

Listeners only identified 3 of 120 songs correctly (a rate of about 2.5%).

45.2 The market for lemons

While that experiment involved agents who had more information than the other
players - they knew the song - we also see failures where the other player has
additional information but the agent does not account for that fact.

We can explore this idea in the market for lemons.

Recall our earlier example in Section 41.1 involving the purchase of a used car.

There are two types of cars, good cars and lemons, and only the seller knows
the type. The buyer knows that the seller has this information.

A car is good with probability 𝑞 and a lemon with probability 1 − 𝑞. To the
seller, good cars are worth $10,000 and lemons $5,000. To potential buyers,
good cars are worth $15,000 and lemons $7,500.

A “cursed” buyer doesn’t think that the seller’s decision whether to trade de-
pends on the seller’s knowledge of the car.

Suppose that 𝑞 = 0.2. That is, only 20% of the cars are good.

Suppose the cursed buyer believes that cars are sold with equal probability
regardless of type.

In that case, the expected value of a car to a buyer is:

Ê = 0.2 × 15000 + 0.8 × 7500

= 9000

A buyer would be willing to pay up to $9000 for a car.

At that price, however, the seller of a good car would not be willing to sell. The
market will comprise only lemons, which sellers are more than happy to sell.
The buyer will pay $9000 for a car worth only $7500 to them.
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45.3 The winner’s curse

We can also explore this phenomenon in the winner’s curse. Recall our example
of the winner’s curse in Section 41.2 on bidding for an oil field.

Company 1 and company 2 hire a geologist to estimate the value of an oil
field. The honest geologist of each company privately reports their estimated
valuation to the company. Company 1 learns 𝑣1 and company 2 learns 𝑣2.

𝑣1 and 𝑣2 are uniformly distributed between $0 and $100 and independent.

Assume the true value of the oil field is the mean of 𝑣1 and 𝑣2:

𝑉 = 𝑣1 + 𝑣2
2

The two companies simultaneously bid for the field in a first-price auction. The
highest bid wins and pays their bid.

Assume company 1 is cursed and therefore assumes that company 2’s bid is
independent of 𝑣2. Company 1 assumes 𝑣2 is on average $50 and that company
2 always bids.

Company 1’s expected profit, if they bid 𝑣1, is:

Ê[𝜋1|bid 𝑣1] = 1
2𝜋1(lose) + 1

2𝜋1(win)

= 1
2 × 0 + 1

2(𝑣1 + 50
2 − 𝑣1)

= 1
4(50 − 𝑣1)

We can see that:

Ê[𝜋1|bid𝑣1] > 0 ⇔ 𝑣1 > 50

That is, company 1 expects to make a profit if they receive a private valaution
of more than $50.

However, as shown in Section 41.2, this bidding approach leads to, on average,
a loss. Company 1 under-appreciates that company 2 is more likely not to bid
when company 2’s information is bad. Therefore, company 1 under-appreciates
the extent to which winning the auction is bad news.
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45.4 Example

45.4.1 Acquiring a company

Company A is considering acquiring Company T.

The value of Company T depends on the outcome of an oil exploration project. If
the project fails, the company under current management will be worth nothing
($0 per share). If the project succeeds, the value of the company under current
management could be as high as $100 per share. All values between $0 and
$100 are equally likely.

Company T will be worth 50 per cent more in the hands of Company A than
under current management. If the project fails, the company will be worth $0
per share under either management. If the exploration project generates a $50
per share value under current management, the value under Company A will be
$75 per share. And so on.

Company A is considering what price per share they should offer. This offer
must be made before Company A knows the outcome of the drilling project,
but after Company T learns the result. Company T will accept any offer from
Company A if it is profitable for them.

a) Show that for any offer above zero Company A expects to lose money.

If Company A offers $𝑥, Company T will accept 𝑥% of the time, whenever the
firm is worth between $0 and $𝑥. Since all those values are equally likely, the
firm will be worth on average $𝑥/2 to company T when they accept. The shares
will therefore be worth 1.5 × 𝑥/2 = 3𝑥/4 on average for company A. That gives
Company A profit of:

𝜋𝐴 = 3𝑥
4 − 𝑥

= −𝑥
4

Any offer above $0 generates a negative expected return, a loss of 25% of the
offer.

To give an example, if Company A offered $60, it will be accepted 60% of the
time - whenever the firm is worth between $0 and $60 for company T. Since all
those values are equally likely, the firm will be worth on average $30 to company
T when they accept, meaning it will be worth $45 on average for company A.
A $60 offer will result in an average loss of $15.

b) People given this problem tend to bid between $50 and $75 per share. A
typical explanation offered by these people is that the average outcome for
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Company T is $50, making the value for Company A $75. Any offer in the
range between these two values would be agreeable to both parties.

Explain why a “cursed” player representing Company A might make a non-zero
offer.

A “cursed” player representing company A does not think that company T’s
decision to sell depends on company T’s knowledge of the oil exploration. As a
result, they are likely to bid based on their unconditional expected value of the
field, not the value conditional on acceptance.

This bidding approach leads to, on average, a loss. The cursed player under-
appreciates that company T is more likely to accept when company T’s valuation
is low.
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Chapter 46

Emotions

Emotions are mental states that signal positive or negative outcomes.
One function of emotions may be to act as a commitment device:

• The emotion of guilt can constrain a desire to “cheat” where cheating
delivers a higher pay-off. This in turn may allow people to trust you.

• The emotion of anger may lead you to punish someone even where deliv-
ering the punishment also harms you. This in turn may lead people to be
less likely to cheat you.

While this behaviour may appear “irrational”, it allows people to make credible
commitments that in turn allow them to enter beneficial trades and cooperative
arrangements, while being less likely to being cheated.

46.1 Punishment

Consider the following quote from Richard Nixon:

I call it the Madman Theory, Bob. I want the North Vietnamese to
believe I’ve reached the point where I might do anything to stop
the war. We’ll just slip the word to them that, “for God’s sake,
you know Nixon is obsessed about communism. We can’t restrain
him when he’s angry—and he has his hand on the nuclear button”
and Ho Chi Minh himself will be in Paris in two days begging for
peace.

Pushing the nuclear button is not in Nixon’s interest, and from a purely rational
perspective may not be a credible threat. But if a madman has his finger on
the button, the calculation changes.
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46.1.1 Complaining for bad service

Recall our earlier example of a customer threatening to complain if they receive
bad service. Complaining is costly.

We determined this by backward induction. At the final node for the customer,
they can complain for a payoff of -1 or not complain for a payoff of 1. They will
not complain.

The company, therefore, has a choice between providing good service for a payoff
of 1 or bad service for a payoff of 2. They will provide bad service. The company
has the same payoff for bad service regardless of the presence of the threat to
complain as the threat is not credible.

For the customer’s initial choice of whether to threaten to complain, it does not
matter either way. Regardless of their threat, they receive bad service.

Figure 46.1: Complaining is costly

But what if the customer gets a strong sense of satisfaction from complaining
worth +3? Then their payoffs become as follows:

The threat to complain is now credible. If they receive bad service, they com-
plain for a payoff of 2 rather than not complain for a payoff of 1.

The company now provides good service following a threat to complain. Absent
that threat, they would provide bad service.
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Figure 46.2: When the threat is credible

Figure 46.3: When the threat is credible
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46.1.2 Chicken

As another example, recall the game of chicken. Two players are driving toward
each other. Whoever swerves first loses. If neither swerves, they crash and die.

There are two pure-strategy Nash equilibria: (Straight, Swerve) and (Swerve,
Straight). If the other player swerves, they want to go straight. If the other
player goes straight, they want to swerve.

Now suppose player A is crazy. They are afraid of nothing and will never swerve.
Player B knows this.

Player A’s craziness acts as a commitment device similar to that of removing
the Steering Wheel. If player A will not swerve, player B will.
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The Nash equilibrium is (Straight, Swerve). The crazy player A wins the game
of chicken.

46.1.3 Receiving a faulty product

A customer received a faulty product from a firm and requested a refund as per
consumer law. The customer also threatened to complain to the Department of
Fair Trading if they did not receive the refund. A customer complaint would be
costly to the firm as they would be required to provide a refund in addition to
incurring the cost of dealing with the complaint.

The firm offered a store credit instead, believing that the customer would not
complain as the time and effort involved would not be worth the potential
refund.

However, the customer still complained to the Department of Fair Trading.

a) Use concepts from game theory to explain why the firm might have held that
belief.

We can draw the extensive form of the game as follows:

We work through this game by backward induction. If the cost to to the cus-
tomer of complaining is greater than the benefit of obtaining the refund, the
customer will not complain. In that case, the firm will offer the store credit.
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Figure 46.4: Extensive form of the game

As the firm believed that the cost to to the customer of complaining is greater
than the benefit of obtaining the refund, the customer’s threat to complain
would not normally be considered credible.

b) Use concepts from behavioural game theory to explain why the firm’s belief
was ultimately incorrect.

The customer’s emotional response may lead them to complain. They might be
angry or obtain satisfaction from seeing the firm punished. In that case, the
customer will complain even though it is not in their material best interest to
do so. Emotionally, it is worthwhile. They incur the cost of complaining but
get the benefit of both the refund and the satisfaction from punishing the firm.
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Chapter 47

Behavioural game theory
exercises

47.1 Penalty kick

A soccer player (the striker) has a penalty kick. The striker is deciding whether
to kick to the left or right. If the goalkeeper dives in the correct direction, the
goalkeeper will stop the ball and the two sides will tie. Otherwise, the striker
will score a goal and win.

Lately, the striker has been having trouble kicking to the right, sometimes miss-
ing the goals even when the goalkeeper doesn’t dive in that direction.

The expected payoffs for each combination of actions are as follows, with the
payoff (𝑥, 𝑦) being the payoffs for the striker and goalkeeper respectively:

Are there any pure-strategy Nash equilibria? If so, what are they?

There are no pure-strategy Nash equilibria. Whatever the striker does, the
goalkeeper wants to match. If the goalkeeper matches, the striker wants to
change.
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a) Suppose the striker and goalkeeper are level-k thinkers.
If they were level-0, both would choose right or left with equal probability.
What would each player do if they were a level-1 thinker? Explain.

Answer

A level-1 striker will assume they are playing a level-0 goalkeeper.
They will estimate the the payoff from each action responding to the
random play of a level-0 goalkeeper.

𝐸[𝑈𝑆(𝑅)] = 0.5 × 0 + 0.5 × 8
= 4

𝐸[𝑈𝑆(𝐿)] = 0.5 × 10 + 0.5 ∗ ×0
= 5

The level-1 striker has a higher expected payoff for kicking left, so kick
left.
A level-1 goalkeeper will assume they are playing a level-0 striker.
They will estimate the the payoff from each action responding to the
random play of a level-0 striker.

𝐸[𝑈𝐺(𝑅)] = 0.5 × 5 + 0.5 × 0
= 2.5

𝐸[𝑈𝐺(𝐿)] = 0.5 × 2 + 0.5 ∗ ×5
= 3.5

The level-1 goalkeeper has a higher expected payoff for going left, so go
left.

b) What would each player do if they were a level-2 thinker? Explain.

Answer

A level-2 striker will assume they are playing a level-1 goalkeeper.
They believe the level-1 goalkeeper will go left, so they will go right (payoff
8 compared to payoff 0).
A level-2 goalkeeper will assume they are playing a level-1 striker.
They believe the level-1 striker will go left, so they will go left (payoff 5
compared to payoff 0).
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47.2 Hide and seek

In the hide-and-seek game, the Hider selects one of the four boxes marked A,
B, A and A. The Seeker guesses the box selected by the hider.

The Seeker wins if they find the Hider. Otherwise, the Hider wins.

The payoffs are as follows. I have labelled the end boxes A1 and A2 to distinguish
the “A”s from each other.

Assume a level-0 seeker or hider selects a box by hiding in or looking in the
“most salient” hiding spots. They choose A1 or A2 on the ends with 𝑝 = 0.3
each, or B (because it is different) with 𝑝 = 0.35. They hide or look in less
salient middle A with probability 1 − 2 × 0.3 − 0.35 = 0.05.
(Note that this assumption for the level-0 agents is different to what we have
assumed to date. We have typically assumed a level-0 agent randomly chooses
an action.)

a) What box do the level-1 hider and seeker choose?

Answer

The level-1 hider calculates the expected payoff from hiding in each of the
boxes if playing against a level-0 seeker.
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𝐸[𝑈(𝐴1)] = 0 × 0.3 + 1 × 0.35 + 1 × 0.05 + 1 × 0.3 = 0.7

𝐸[𝑈(𝐵)] = 1 × 0.3 + 0 × 0.35 + 1 × 0.05 + 1 × 0.3 = 0.65

𝐸[𝑈(𝐴)] = 1 × 0.3 + 1 × 0.35 + 0 × 0.05 + 1 × 0.3 = 0.95

𝐸[𝑈(𝐴2)] = 1 × 0.3 + 1 × 0.35 + 1 × 0.05 + 0 × 0.3 = 0.7

The level-1 hider hides in the least salient box A.
The level-1 seeker calculates the expected payoff from looking in each of
the boxes if playing against a level-0 hider.

𝐸[𝑈(𝐴1)] = 1 × 0.3 + 0 × 0.35 + 0 × 0.05 + 0 × 0.3 = 0.3

𝐸[𝑈(𝐵)] = 0 × 0.3 + 1 × 0.35 + 0 × 0.05 + 0 × 0.3 = 0.35

𝐸[𝑈(𝐴)] = 0 × 0.3 + 0 × 0.35 + 1 × 0.05 + 0 × 0.3 = 0.05

𝐸[𝑈(𝐴2)] = 0 × 0.3 + 0 × 0.35 + 0 × 0.05 + 1 × 0.3 = 0.3

The level-1 seeker looks in Box B.
If both the hider and seeker are level-1, the hider wins.

b) What box do the level-2 hider and seeker choose?

Answer

The level-2 hider knows that the level-1 seeker chooses B. They select any
box apart from B with equal probability, all of which they believe will give
a pay-off of 1.
The level-2 seeker knows that the level-1 hider will select A. They select
A.
The level-2 seeker wins with probability 1/3.

c) What box do the level-3 hider and seeker choose?
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Answer

The level-3 hider knows that the level-2 seeker chooses A. They select any
box apart from A with equal probability, all of which they believe will
give a pay-off of 1.
The level-3 seeker knows that the level-2 hider will select any box except
B with equal probability. They select one of A1, A2 or A with equal
probability.
The level-3 seeker wins with probability 1/3 × 1/3 + 1/3 × 1/3 = 2/9.

d) What box do the level-4 hider and seeker choose?

Answer

The level-4 hider knows that the level-3 seeker selected A1, A2 and A with
equal probability. They select B.
The level-4 seeker knows that the level-3 hider selected any box apart
from A with equal probability. They also select those boxes with equal
probability.
The level-4 seeker wins with probability 1/3.

47.3 Matching pennies (with a twist)

Consider the following two-player game:

a) What are the two pure-strategy Nash equilibria of this game?

Answer

The two pure-strategy Nash equilibria of this game are (X,X) and (Y,Y).
That is, if the players are jointly playing either of those combinations of
strategies, neither has an incentive to deviate. Their response is a best
response to the other players’ actions.
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b) Suppose players in this game think according to the level-k model. Assume
a level-0 agent randomises between options with equal probability.

What would player A and player B do if they were level-1 players?

Answer

Remember the idea behind level-k thinking: given their own cognitive
level, a player forms an expectation of what others will do and tries to be
“one step ahead of them”.
We work out the utility of each option.
First, for player A:

𝐸𝑈1
𝐴(𝑋) = 0.5 × 6 + 0.5 × 0 = 3

𝐸𝑈1
𝐴(𝑌 ) = 0.5 × 0 + 0.5 × 6.1 = 3.05

Player A chooses Y if they are a level-1 player.
Next, for player B:

𝐸𝑈1
𝐵(𝑋) = 0.5 × 6.1 + 0.5 × 0 = 3.05

𝐸𝑈1
𝐵(𝑌 ) = 0.5 × 0 + 0.5 × 6 = 3

Player B chooses X if they are a level-1 player.
If both players are level-1, they will fail to coordinate.

c) What would player A and player B do if they were level-2 players?

Answer

We again work out the utility of each option:
First, for player A. They know that a level-1 player B will select X. Ac-
cordingly:

𝐸𝑈2
𝐴(𝑋) = 1 × 6 + 0 × 0 = 6

𝐸𝑈2
𝐴(𝑌 ) = 1 × 0 + 0 × 6.1 = 0

Player A chooses X if they are a level-2 player.
Next, for player B. They know that a level-1 player A will select Y. Ac-
cordingly:
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𝐸𝑈2
𝐵(𝑋) = 0 × 6.1 + 1 × 0 = 0

𝐸𝑈2
𝐵(𝑌 ) = 0 × 0 + 1 × 6 = 6

Player B chooses Y if they are a level-2 player.
If both players are level-2, they will fail to coordinate.

d) What would player A and player B do if they were level-3 players?

Answer

We again work out the utility of each option:
First, for player A. They know that a level-2 player B will select Y. Ac-
cordingly:

𝐸𝑈3
𝐴(𝑋) = 0 × 6 + 1 × 0 = 0

𝐸𝑈3
𝐴(𝑌 ) = 0 × 0 + 1 × 6.1 = 6.1

Player A chooses Y if they are a level-3 player.
Next, for player B. They know that a level-2 player A will select X. Ac-
cordingly:

𝐸𝑈3
𝐵(𝑋) = 1 × 6.1 + 0 × 0 = 6.1

𝐸𝑈3
𝐵(𝑌 ) = 1 × 0 + 0 × 6 = 0

Player B chooses X if they are a level-3 player.
If both players are level-3, they will fail to coordinate.

e) When this game is played in the laboratory, the players mis-coordinate.
About 3/4 of the row players (player A) choose X while about 3/4 of the col-
umn players (player B) choose Y.

Of interest, each player tries to coordinate on the strategy that the other player
would be better off coordinating on. That is, Player A receives 6 from successful
coordination choosing X, which is less than the 6.1 Player A would get from
coordinating on Y.

Given your answers to b) through d), what mix of level-k players might explain
the mis-coordination described above?
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Answer

That 3/4 of Player “A”s choose X and 3/4 of Player “B”s choose Y suggests
there are many level-2 players (or possibly level-4). They each assume that
the other player is level-1 and has picked the option with the highest payoff
for themselves. They are effectively trying to coordinate with the other
player by assuming that the other will seek their highest paying option.
However, if both do this, both receive nothing.

47.4 Cafe

Two friends, Player 1 and Player 2, have arranged to meet at a cafe. Neither
can remember which of the two cafes in town they had arranged to meet at.
Each player has a favourite cafe. However, they would prefer to go to their
less-favourite cafe with a friend than go to their favourite cafe alone.
Each chooses a cafe and goes there. The payoffs for each combination of choices
are in the table below, with the payoffs (𝑥, 𝑦) being the payoffs for Player 1 and
Player 2 respectively.

a) What are the pure-strategy Nash equilbria of this game?

Answer

If player 2 chooses cafe A, player 1 wants to choose cafe A.
If player 2 chooses cafe B, player 1 wants to choose cafe B.
If player 1 chooses cafe A, player 1 wants to choose cafe A.
If player 1 chooses cafe B, player 1 wants to choose cafe B.

The two pure-strategy Nash equilibria are (cafe A, cafe A) and (cafe B,
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cafe B).

b) What would Player 1 and Player 2 do if each was a level-1 thinker? Explain.

Answer

If Player 2 chooses randomly, Player 1’s payoff’s from each option are:

𝑈1(cafe A) = 0.5 × 2 + 0.5 × 0 = 1

𝑈1(cafe B) = 0.5 × 0 + 0.5 × 1 = 0.5

Player 1 chooses cafe A.
If Player 1 chooses randomly, Player 2’s payoff’s from each option are:

𝑈2(cafe A) = 0.5 × 1 + 0.5 × 0 = 0.5

𝑈2(cafe B) = 0.5 × 0 + 0.5 × 3 = 1.5

Player 2 chooses cafe B.

c) What would Player 1 and Player 2 do if each was a level-2 thinker? Explain.

Answer

The level-2 Player 1 assumes that Player 2 is level-1. Therefore, they
assume that Player 2 will choose cafe B. Accordingly, they choose cafe B.
The level-2 Player 2 assumes that Player 1 is level-1. Therefore, they
assume that Player 1 will choose cafe A. Accordingly, they choose cafe A.

47.5 Buying a car

Suppose that you are considering purchasing a car.
You believe that the seller values it between $1000 and $5000, with an equal
probability that it has a value at any point in this range. That is, you believe
it is uniformly valued to the seller between $1000 and $5000.
The seller knows the car and its true value.
Assume that whatever the car is worth to the seller, it is worth 1.33 times that
to you (so a car worth $2400 to the owner is actually worth $3200 to you).
a) What offer should you make to ensure that you will not lose money?
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Answer

Suppose you offer $𝑥. If the seller accepts, the value must be between
$1000 and $𝑥.
As the value evenly distributed across that interval, its average value would
be:

1000 + 𝑥 − 1000
2 = 500 + 𝑥

2
The expected value of the car to you will be:

4
3(500 + 𝑥

2)

To ensure you don’t lose you want:

4
3(500 + 𝑥

2) > 𝑥

Solving this out, you expect to make a profit where 𝑥 < $2000.

b) Suppose you are cursed player and you believe sellers will take the average
optimal action of selling whenever they are offered more than $3000. As a result,
you decide to offer $3000. What is your accepted profit if the seller accepts your
offer?

Answer

If seller accepts, the value must be between $1000 and $3000.
If value evenly distributed across that interval, its average value would be
$2000.
Given it is worth 1.33 times more to you, it would be worth $2,667 on
average.
You would lose, on average, $333.

47.6 Advice

Agent A is going to their financial adviser to buy some life insurance. The
adviser can sell them insurance that does not cover heart attacks but for which
the adviser receives a huge sales commission (bad insurance). Or the adviser
can sell Agent A comprehensive insurance for which their sales commission is
lower (good insurance).

The payoffs (𝑥, 𝑦) for each decision are indicated in the game tree below, with
𝑥 being the satisfaction of Agent A and 𝑦 being the satisfaction of the adviser.
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a) Assume the adviser only cares about the payoffs indicated. What would the
adviser do if Agent A chooses to purchase?

Answer

The adviser will compare payoffs of 4 for selling bad insurance and 2 for
selling good insurance. They will choose to sell bad insurance.

b) What would Agent A do, anticipating the choice of the adviser?

Answer

Agent A will compare a payoff of 0 for no purchase and a payoff of -2 for
purchase (knowing that they will be sold bad insurance). They will choose
not to buy insurance.

c) Suppose now that Agent A can complain to the regulator if they are sold bad
insurance. If Agent A is successful, they can cancel the insurance but would
suffer a cost of -3 due to the effort involved. Would this change the outcome of
the game?
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Answer

Working by backward induction: Agent A has a choice between complain-
ing for a payoff of -3 or not complaining for a payoff of -2. They do not
complain.
The rest of the game plays out as per questions a) and b). There is no
change to the outcome as they cannot commit to complain in advance (at
least in this version of the game). The threat to complain is not credible.

d) Suppose Agent A has a reputation for seeking revenge and would experience
satisfaction of +4 from complaining to the regulator (in addition to the effort
cost of -3) as reciprocation for the action of the adviser. How would this change
the outcome of the game?

Answer
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The agent now has a choice between a payoff of 0 for selling bad insurance
(as Agent A complains and the insurance is cancelled) and 2 for selling
good insurance. They sell the good insurance.
Agent A now has a choice of a payoff of 0 for not purchasing insurance
and 2 for purchasing. They make the purchase.
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Part VIII

Social preferences
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People do not care solely about their own outcomes. They care about the out-
comes and actions of others. These preferences are known as social preferences,
or sometimes “other-regarding preferences”.
In this part, I will examine the three types of social preferences: distribution,
reputation, and reciprocity.
Distribution refers to how people care about the division of resources. This can
be driven by either altruism, which is the desire to help others, or inequality
aversion, which is concerned with the fairness of the distribution and the relative
gaps between individuals.
Reputation relates to how people care about what other people think. People
fear the social stigma that can result from “selfish” behaviour.
Reciprocity relates to how people care about the intentions of others and how
they often respond in kind to their actions.

Two examples

The results of the following games are evidence of social preferences.

The ultimatum game

Recall our earlier discussion of the ultimatum game.
The ultimatum game involves two players: the proposer and the responder.
The proposer is given a fixed amount of money 𝑚. They then offer a portion 𝑥
of the sum 𝑚 to the responder.
The responder can either accept or reject the offer. They make this decision
knowing the fixed amount 𝑚 held by the proposer and the offer 𝑥.
If the responder accepts, the responder receives the offer 𝑥 and the proposer
gets the remainder 𝑚−𝑥. If the responder rejects, both players receive nothing.

Figure 47.1: The ultimatum game

Generally, if the players have monotonic preferences and the offer strategy set
is discrete:
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• The responder accepts any 𝑥 > 0.
• The proposer offers the smallest non-zero amount the proposer can offer.

The other (weak) subgame perfect Nash equilibrium is an offer of $0 and accep-
tance.

What do people do in the ultimatum game?

Unlike the game theoretic predictions, proposers rarely offer the minimum
amount, and responders often reject non-zero offers.

For example, Henrich et al. (2001) recruited subjects from 15 small-scale soci-
eties to play the ultimatum game. The mean offer in all societies was substan-
tially above zero. The rejection rate was low but non-zero.
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These results cannot be explained by examining only the outcomes to the indi-
vidual. We need to consider their social preferences.

The dictator game

Recall our earlier discussion of the dictator game.

In the dictator game, the dictator is given a fixed amount of money 𝑚. They
then offer a portion 𝑥 of the sum 𝑚 to the receiver. The game then ends.

Exchange is unilateral. Receivers have an empty strategy set.

Figure 47.2: The dictator game

The standard game theory prediction is that the dictator offers nothing. The
dictator maximises their payoff by keeping all of the endowment themselves,
receiving payoff 𝑚.

However, in experiments, dictators tend to give a positive sum of money. The
following shows distributions reported by Engel (2011). Most players offer more
than zero, suggesting preferences beyond simply maximising their own payoff.

(a) Mean per treatment (b) Individual give rates

Figure 47.3: Distribution of amount given in the dictator game (Engel, 2011).
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Chapter 48

Distribution

Distributional preferences are preferences that relate to the relative amount of
money or resources each person gets or has.

It is often easy to incorporate distributional preferences into economic analysis
as they are a natural extension of how economists think about individuals’
preferences. We can extend to other people the typical assumption that a person
cares about their own material outcomes.

We will examine two types of distributional preferences: altruism and inequality
aversion.

48.1 Altruism

Altruism is concern for the outcomes of others.

To incorporate altruism, we give a positive weight to the utility of others in the
utility function. An example utility function might be:

𝑈𝑖(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖 + 𝛼𝑥𝑗

where 𝑈𝑖 is the utility of agent 𝑖, 𝑥𝑖 the outcome for agent 𝑖 and 𝑥𝑗 the outcome
for agent 𝑗. 𝛼 is some number greater than zero.

Altruism might have different drivers.

For example, the agent might exhibit pure altruism, with genuine concern for
others’ wellbeing.

Alternatively, the agent might exhibit impure altruism. They experience a
“warm glow” about doing good without actually caring about the other’s well-
being.
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Altruism, however, is insufficient to explain some experimental results, such
as those in the ultimatum game. While it could predict non-zero offers by
the proposer, it does not predict the rejection of any offers by the responder.
Rejection harms both the responder and the proposer.

The proposer could only reject if a negative weight were applied to either their
own or the proposer’s outcome.

48.2 Inequality aversion

An alternative distributional preference model that may explain some of these
results is inequality aversion.

The idea behind inequality aversion is that people may dislike having less than
others and dislike having more than others.

48.2.1 The Fehr-Schmidt model

One basic mode of inquality aversion comes from the utility function in Fehr
and Schmidt (1999). It is of the following form:

𝑢𝑖(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖 − 𝛼max{𝑥𝑗 − 𝑥𝑖, 0} − 𝛽max{𝑥𝑖 − 𝑥𝑗, 0}

The three terms in this function represent:

• The utility of their own outcome 𝑥𝑖

• Their dislike of having less than the other agent (where 𝛼 > 0)
• Their dislike of having more than the other agent (where 𝛽 > 0)

We can also write this utility function as:

𝑢𝑖(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖 − {
𝛽(𝑥𝑖 − 𝑥𝑗) if 𝑥𝑖 ≥ 𝑥𝑗

𝛼(𝑥𝑗 − 𝑥𝑖) if 𝑥𝑖 < 𝑥𝑗

Typically 𝛼 > 𝛽 as people dislike having less than others than they dislike
having more than others. We could also set 𝛽 < 0 for an agent that likes to be
better off than others.

This utility function has a kink at 𝑥𝑗 where agent 𝑖 moves from having less
to more than agent 𝑗. If 0 < 𝛽 < 1 as in this diagram, the utility of agent 𝑖,
𝑈(𝑥𝑖) continues to increase in 𝑥𝑖 above 𝑥𝑗, but at a decreasing rate as inequality
degrades the benefits of having more.
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48.2.2 The ultimatum game

We can examine the Fehr-Schmidt model in the context of the ultimatum game.

Suppose two players of the ultimatum game have Fehr-Schmidt preferences,
with 𝛽 = 0.25 and 𝛼 = 0.5.
What offers 𝑥 would the responder reject where the proposer has $10 to split
between them?

If the responder rejects, the payoff to the proposer and responder is zero. That
is:

𝑥𝑃 = 𝑥𝑅 = 0

If the responder accepts, the responder receives 𝑥, and the proposer keeps the
remainder. That is:

𝑥𝑃 = 10 − 𝑥

𝑥𝑅 = 𝑥

The responder will accept if the utility of accepting is greater than the utility
of rejecting. That is:
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𝑈𝑅(accept) > 𝑈𝑅(reject)

𝑥𝑅 − 𝛼max{𝑥𝑃 − 𝑥𝑅, 0} − 𝛽max{𝑥𝑅 − 𝑥𝑃 , 0}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Substituting in the Fehr-Schmidt utility function

> 0

𝑥 − 𝛼max{10 − 𝑥 − 𝑥, 0} − 𝛽max{𝑥 − (10 − 𝑥), 0}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Substituting in the payoffs when accepted

> 0

𝑥 − 𝛼max{10 − 2𝑥, 0} − 𝛽max{2𝑥 − 10, 0} > 0

If the offer is more than $5, the 𝛼 term is multiplied by zero and the inequality
becomes:

𝑥 − 𝛽max{2𝑥 − 10, 0} > 0

𝑥 − 𝛽(2𝑥 − 10) > 0

This will always hold for any 𝛽 < 1 as 𝑥 > 5 and 5 ≥ 2𝑥 − 10 > 0. Therefore,
the condition will hold for the agent with 𝛽 = 0.5. Recall that if 𝛽 < 1 the
responder has higher utility from a higher payoff but at a decreasing rate when
they have more than the proposer. In this case, if 𝛽 < 1 the responder will
always accept offers greater than $5.
If the offer is less than $5, the 𝛽 term is multiplied by zero and the inequality
becomes:

𝑥 − 𝛼max{10 − 2𝑥, 0} > 0

𝑥 − 𝛼(10 − 2𝑥) > 0

Whether this holds depends on the value of 𝛼 and the size of the offer 𝑥. If
𝛼 = 1/2, then:

(1 + 1
2)𝑥 − 1

2(10 − 𝑥) > 0

2𝑥 − 5 > 0

𝑥 > 2.5
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A responder with 𝛼 = 1/2 will reject any offer under $2.50.
We can plot the utility function for this game as the size of the offer increases.
As the offer is not independent of the proposer’s payoff, I will derive the shape
of the utility curve as a function of 𝑥𝑅 = 𝑥.

𝑈𝑅(𝑥𝑃 , 𝑥𝑅) = 𝑥𝑅 − 𝛼max{𝑥𝑃 − 𝑥𝑅, 0} − 𝛽max{𝑥𝑅 − 𝑥𝑃 , 0}

= 𝑥 − 𝛼max{10 − 2𝑥, 0} − 𝛽max{2𝑥 − 10, 0}

We can also write this as:

𝑈𝑅(𝑥𝑃 , 𝑥𝑅) = {
(1 + 2𝛼)𝑥 − 10𝛼 if 𝑥 ≥ 0
(1 − 2𝛽)𝑥 + 10𝛽 if 𝑥 < 0

The slope of each of these curves is twice that we saw earlier as any increase in
outcome for the responder is matched by a decrease in outcome for the proposer
(and vice versa).
This diagram shows the responder’s utility curve as a function of the offer 𝑥.

48.3 The Charness-Rabin model

Charness and Rabin (2002) developed a utility function that captures the pos-
sible forms of distributional preference. An agent’s attitude toward others de-
pends on their relative position. The utility function is:

𝑢𝑖(𝑥𝑖, 𝑥𝑗) = {
𝜌𝑥𝑗 + (1 − 𝜌)𝑥𝑖 if 𝑥𝑖 ≥ 𝑥𝑗

𝜎𝑥𝑗 + (1 − 𝜎)𝑥𝑖 if 𝑥𝑖 < 𝑥𝑗
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Where 𝑥𝑖 is the payoff to player 𝑖 and 𝑥𝑗 is the payoff to the other player.

𝜌 and 𝜎 capture the agent’s attitudes toward others. When the agent is ahead
the other player’s welfare enters their utility via 𝜌. When the agent is behind
the other player’s welfare enters agent’s utility via 𝜎. For most people 𝜌 > 𝜎.
They give more weight to others’ utility when they are better off. 𝜎 can also
be less than zero. If they are behind someone, they place negative weight on
further gains by that person.

This utility function is equivalent to that of Fehr and Schmidt (1999). You can
rearrange the terms to show that 𝛽 = 𝜌 and 𝛼 = −𝜎. However, expressing the
utility function in this way allows us to consider distributional preferences other
than inequality aversion in a more intuitive way.

48.3.1 The dictator game

Consider the following example of the dictator game. In the dictator game, the
dictator makes a unilateral offer to the receiver. The game then ends. The
receiver has an empty strategy set.

In this version of the game, the dictator must decide between the allocations (0,
1) and (1, 5), where (𝑥𝐷, 𝑥𝑅) represent the payoffs for the dictator and receiver,
respectively. The dictator’s 𝜎 = −1/2. As the dictator has less than the other
player under each distribution, 𝜎 is the relevant parameter.

Figure 48.1: A constrained dictator game

We can calculate the dictator’s utility of each allocation.
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𝑈(0, 1) = 𝜎 × 1 + (1 − 𝜎) × 0

= −1/2 × 1 + (1 + 1/2) × 0

= −1/2

𝑈(1, 5) = 𝜎 × 5 + (1 − 𝜎) × 1

= −1/2 × 5 + (1 + 1/2) × 1

= −1

The dictator prefers to allocate (0,1), even though it is worse for them because
it is also worse for the other player.

𝜎 < 0 can also account for the rejection of low offers in the ultimatum game.

48.3.2 Forms of distributional preferences

We can adjust the values of 𝜌 and 𝜎 to capture many forms of distributional
preferences. Some are as follows.

If 𝜎 > 0 and 𝜌 > 0, the agent is altruistic. A higher payoff to the other player
increases the agent’s utility.

If 1 ≥ 𝜌 ≥ 0 > 𝜎, the agent is inequality averse. If the other player has more,
the agent’s utility decreases with further gains for the other player. If the other
player has less, the agent’s utility increases with further gains for either agent.

If 0 > 𝜌 ≥ 𝜎, the agent is status-seeking. They gain more utility by having
more than the other player. Their utility goes up when either they get more or
the other player gets less.

If 𝜌 = 𝜎 = 0 we are left with the classical self-interested utility function. The
agent only cares about their own payoff.

If 𝜌 = 1 and 𝜎 = 0, then 𝑢𝑖(𝑥𝑖, 𝑥𝑗) = min{𝑥𝑖, 𝑥𝑗}. The agent has Rawlsian
preferences whereby the agent seeks the greatest benefit for the least advantaged.

If 𝜌 = 𝜎 = 1/2, then 𝑢𝑖(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖 + 𝑥𝑗. The agent has utilitarian preferences
whereby the agent seeks to maximise total utility.

We could develop similar forms of preferences by adjusting the values of 𝛼 and
𝛽 in the Fehr-Schmidt model.
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48.3.3 Example: the trust game

In the exercises in Section 43.3, I considered whether Linda should invest in
Marco’s startup:

Linda is looking for investment opportunities. She identifies a
promising crypto-based start-up created by Marco. Marco is
looking for seed funding.
Linda can invest $10.
If Linda invests, her investment will triple in value. Marco can then
decide to either shut down the start-up and keep the $30 or maintain
the start-up in the market and pay a $15 dividend to each of Linda
and himself.
If Linda does not invest, Linda keeps the $10. The start-up gets $0.

Figure 48.2: The trust game

Macro, who is effectively playing a dictator game, would shut down and keep
the $30. As a result, Linda would not invest.

Suppose now that Linda and Marco have preferences as follows:

𝑈𝐿(𝑥𝐿, 𝑥𝑀) = {
1
3𝑥𝐿 + 2

3𝑥𝑀 if 𝑥𝐿 ≥ 𝑥𝑀
2
3𝑥𝐿 + 1

3𝑥𝑀 if 𝑥𝐿 < 𝑥𝑀

𝑈𝑀(𝑥𝐿, 𝑥𝑀) = {
3
4𝑥𝐿 + 1

4𝑥𝑀 if 𝑥𝑀 ≥ 𝑥𝐿

𝑥𝑀 if 𝑥𝑀 < 𝑥𝐿

Where 𝑈𝐿 and 𝑈𝑀 are Linda and Marco’s utility functions. 𝑥𝐿 and 𝑥𝑀 are the
outcomes for Linda and Marco.
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Both Marco and Linda give positive weight to the payoff of the other in most
circumstances, except for Marco, who, when he is behind Linda, only cares
about himself.

Marco and Linda know each other’s utility functions.

What is the equilibrium with these distributional preferences?

If Linda chooses trust, Marco has a choice between $15 each and $30 for himself.
Marco calculates the utility of each option.

𝑈𝑀(𝑥𝐿, 𝑥𝑀) = {
3
4𝑥𝐿 + 1

4𝑥𝑀 if 𝑥𝑀 ≥ 𝑥𝐿

𝑥𝑀 if 𝑥𝑀 < 𝑥𝐿

𝑈𝑀(15, 15) = 3
4(15) + 1

4(15) = 15

𝑈𝑀(0, 30) = 3
4(0) + 1

4(30) = 7.5

Marco receives higher utility by paying the dividend to Linda.

Linda also has utility from each distribution.

𝑈𝐿(𝑥𝐿, 𝑥𝑀) = {
1
3𝑥𝐿 + 2

3𝑥𝑀 if 𝑥𝐿 ≥ 𝑥𝑀
2
3𝑥𝐿 + 1

3𝑥𝑀 if 𝑥𝐿 < 𝑥𝑀

𝑈𝐿(15, 15) = 1
3(15) + 2

3(15) = 15

𝑈𝐿(0, 30) = 2
3(0) + 1

3(30) = 10

Linda would prefer that Marco pay a dividend.

For the other node, if Linda does not invest, she will keep $10. Marco will have
nothing.

𝑈𝑀(10, 0) = 0

𝑈𝐿(10, 0) = 1
3(10) + 2

3(0) = 3.33
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Figure 48.3: The trust game

Putting those payoffs into the extensive form of the game, we get the following:

In this game, Marco can return a dividend for utility 15 or shut down for utility
7.5. He chooses to return the dividend. As a result, Linda will invest for utility
15, rather than not invest for utility 3.33. Linda invests.

Figure 48.4: The trust game
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Chapter 49

Reputation

People care about what other people think. They fear the social stigma that
can result from “selfish” behaviour.

Partly, this is for strategic reasons. For example, to attract reciprocal behaviour,
people may need to be aware of your intentions.

However, there is also evidence that people care about what other people think.

49.1 Example

One example of this comes from Andreoni and Bernheim (2009), who ran a
non-anonymous dictator game.

Each dictator was endowed with $20.

A computer then chose a distribution between the dictator and the receiver,
selecting either ($0, $20) or ($20, $0) with equal probability. The dictator
observes the computer’s allocation, but the receiver does not.

The computer’s allocation is then implemented with a probability 𝑝. Otherwise,
the dictator’s allocation is made. This probability is known to both the dictator
and the receiver.

If the dictator’s choice is to be implemented, the dictator makes a split of the
$20, offering 𝑥 to the receiver. The receiver learns only the allocation. They do
not learn the dictator’s choice.

Distributional preferences predict that 𝑝 should not affect the dictator’s choice.
The dictator should only think about the situation in which their choice matters.

However, the experimental results did not conform with this prediction. Dicta-
tors condition their decision on the common knowledge of 𝑝.
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Figure 49.1: The dictator game with reputational concerns
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This chart shows how offers change with (p) when the computer’s offer of 0 if
selected. The x-axis shows 𝑝 equal to 0, 0.25, 0.5 and 0.75. Each line represents
a different bucket of offers. The red line is the proportion of dictators offering
0. The blue line represents the proportion of participants offering $10, a 50:50
split.

For 𝑝 of 0.5 or 0.75 and a computer allocation of 0 to the receiver, most dictators
will offer 0. If the receiver receives a low allocation, the receiver will likely infer
it is due to the computer’s decision. They will not blame the dictator.

For 𝑝 of 0 and a computer allocation of 0 to the receiver, more than half of
dictators will offer $10 to the receiver. In this case, if the receiver receives a
low allocation, the receiver will infer it is due to the dictator’s decision, not the
computer’s.

For a 𝑝 of 0.25, a slim majority of participants offer zero, with some plausible
deniability due to the 25% probability of the offer coming from the computer.

These results suggest the dictator cares about their reputation in the eyes of
the receiver.
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Chapter 50

Reciprocity

Reciprocity involves like-for-like behaviour. Kindness is responded to with kind-
ness. Unkindness is responded to with unkindness.

Reciprocity might be considered to have two forms.

The first is instrumental reciprocity. Agents reciprocate behaviour due to the
long-term benefits of sustained cooperation. The behaviour is motivated by the
positive trade-off between long-term and short-term gains.

The second is intrinsic reciprocity. Agents reciprocate behaviour despite the
absence of long-term gains.

50.1 Intentions

We can see evidence for reciprocity in how people respond to the intentions of
others in the ultimatum game.

The ultimatum game involves two players: the proposer and the responder.

The proposer is given a fixed amount of money 𝑚. They then offer a portion 𝑥
of the sum 𝑚 to the responder.

The responder can either accept or reject the offer. They make this decision
knowing the fixed amount 𝑚 held by the proposer and the offer 𝑥.
If the responder accepts, the responder receives the offer 𝑥 and the proposer
gets the remainder 𝑚−𝑥. If the responder rejects, both players receive nothing.

Consider this variation of the ultimatum game. In each of two scenarios, the
proposer has a constrained choice of offers.
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Figure 50.1: The ultimatum game

In scenario 1, the proposer has a choice between offering a split of $8 for the pro-
poser and $2 for the responder or $5 for the proposer and $5 for the responder.
Responders tend to reject offers of $2.

Figure 50.2: Scenario 1 of the ultimatum game

In scenario 2, the proposer has a choice between offering a split of $8 for the
proposer and $2 for the responder or keeping the full $10 for themselves. Re-
sponders tend to accept offers of $2.

In the first scenario, responders reject offers of $2. In the second, they accept
them. How can ($8, $2) be better than ($0, $0) in one scenario but not in the
other?

Distributional concerns cannot explain rejection in this case. An offer of ($8,
$2) leads to the same distribution in both scenarios.

Instead, responders do not base their decision on the outcome alone. They use
their knowledge of the proposer’s options, consider the proposer’s intentions and
reciprocate them.
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Figure 50.3: Scenario 2 of the ultimatum game

A proposer who offers $2 instead of $0 is seen as having good intentions. A
proposer who offers $2 instead of $5 is seen as having bad intentions.

50.2 The trust game

The trust game provides another potential example of reciprocity.

The trust game involves two players: a sender and a receiver

Both the sender and receiver are given an initial sum 𝑚.

The sender sends a share 𝑥 of their 𝑚 to the receiver. This amount 𝑥 is often
called the investment.

Before the receiver receives the investment, it is multiplied by some factor 𝑘.
Therefore, the receiver receives 𝑘𝑥.
The receiver then returns to the sender some share 𝑦 of their total allocation
𝑚 + 𝑘𝑥.
The final outcome is the sender has 𝑚 − 𝑥 + 𝑦 and the receiver has 𝑚 + 𝑘𝑥 − 𝑦.
The game theoretic equilibrium is for the receiver to return nothing, so the
sender sends nothing.

Contrast this with what happens in experimental settings.

Senders tend to send a positive amount, typically around half of their endow-
ment.
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Figure 50.4: The trust game

Receivers tend to send back a bit less than is sent.

These two figures from N. D. Johnson and Mislin (2011) illustrate the distribu-
tion of investments and returns in 162 replications of the trust game.

(a) Sent (b) Returned

Figure 50.5: Distribution of proportion sent and proportion returned (N. D.
Johnson and Mislin, 2011).

One possible explanation for this behaviour is that the receiver feels they should
reciprocate the sender’s investment. They are responding to the sender’s inten-
tions. The sender trusts that some of their investment will be repaid due to
reciprocation.

The receiver’s behaviour is also consistent with altruism and inequality aversion.

50.3 The public goods game

As a final example of reciprocity, consider the public goods game.

Each of 𝑁 participants is given an initial endowment.

Each participant secretly and simultaneously chooses how much of their endow-
ment they wish to contribute to a public pot.

The money in the public pot is multiplied by some amount and split evenly

403



between the players. Typically, the multiple applied to the pot is greater than
one but less than the number of players.

Figure 50.6: The public goods game

In Nash equilibrium in the public goods game, nobody transfers anything to the
pot. Any contributions are split between all players, so if there are more players
than the multiple, which is normally the case by design, contributions result in
a loss to that individual player.

This is not what we see when people play the public goods game in the lab.

In a meta-analysis, Zelmer (2003) found an average contribution of 38% of the
endowment. The amount contributed increased with the marginal per capita
return; that is the higher 𝑘/𝑁 .

One possible explanation is that players trust that the other players will con-
tribute, so they desire to reciprocate the expected contributions from others.

Another explanation hinges on social norms. Where a norm of behaviour exists,
people tend to follow it.
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Chapter 51

Social preferences exercises

51.1 Fehr-Schmidt preferences

Alby has the following distributional preferences:

𝑢𝐴(𝑥𝐴, 𝑥𝑗) = 𝑥𝐴⏟
(1)

− 𝛼max{𝑥𝑗 − 𝑥𝐴, 0}⏟⏟⏟⏟⏟⏟⏟⏟⏟
(2)

− 𝛽max{𝑥𝐴 − 𝑥𝑗, 0}⏟⏟⏟⏟⏟⏟⏟⏟⏟
(3)

where:

𝑥𝐴 is the outcome for Alby

𝑥𝑗 is the outcome for any agent 𝑗 with whom Alby interacts.

a) For 𝛼 > 0 and 𝛽 > 0, what are preferences of this form are normally called?

Answer

Inequality aversion.

b) For 𝛼 > 0 and 𝛽 > 0, describe the role of each of the three terms labelled
(1), (2) and (3) in the utility function.

Answer

The first term captures the utility of Alby’s own outcome.
The second term captures Alby’s dislike of having less than others.
The third term captures Alby’s dislike of having more than others.

c) Explain the intuition for why we normally set 𝛼 > 𝛽.
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Answer

Most people dislike having less than others more than they dislike having
more than others. In some instances, 𝛽 < 0 in which case people like
having more than others - they are fine with inequality as long as it is to
their advantage.

51.2 Charness-Rabin preferences

Bob has the following distributional preferences:

𝑢𝐵(𝑥𝐵, 𝑥𝑗) = {
𝜌𝑥𝑗 + (1 − 𝜌)𝑥𝐵 if 𝑥𝐵 ≥ 𝑥𝑗

𝜎𝑥𝑗 + (1 − 𝜎)𝑥𝐵 if 𝑥𝐵 < 𝑥𝑗

where:
𝑥𝐵 is the outcome of the game for Bob
𝑥𝑗 is the outcome of the game for any agent 𝑗 with whom Bob interacts.
a) For 1 ≥ 𝜌 ≥ 0 ≥ 𝜎, what are preferences of this form are normally called?

Answer

Inequality aversion.

b) For 1 ≥ 𝜌 ≥ 0 ≥ 𝜎, describe the role of the terms in each of the two equations
where 𝑥𝐵 ≥ 𝑥𝑗 and 𝑥𝐵 < 𝑥𝑗.

Answer

𝜎 and 𝜌 are the weight that is Bob gives to the outcome for agent 𝑗. 𝜎 is
applied where Bob’s outcome is better than or equal to that of agent 𝑗,
and 𝜌 where it is worse.
The residual 1 − 𝜎 and 1 − 𝜌 is the weight that Bob gives to his own
outcome.

c) Explain the intuition why we normally set 𝜌 > 𝜎 for the utility function.

Answer

People tend to be more willing to see others have better outcomes when
those others are worse off than them. Therefore, 𝜌 should be greater than
𝜎 so that the agent cares more about the other agent when they are the
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one receiving more.

d) What values of 𝜌 and 𝜎 would result in a utility function where Bob is purely
self-interested?

Answer

If Bob were purely self interested, 𝜌 and 𝜎 would have a value of zero.
In that case, agent 𝑗’s outcomes would not enter into the utility function.
The utility function would become 𝑢𝐵(𝑥𝐵) = 𝑥𝐵.

e) What value must 𝜎 have to explain Bob’s rejection of low offers in the ulti-
matum game?

Answer

Sigma must be negative such that, if agent 𝑖 accepts, the decrease in utility
from agent 𝑗’s payoff would be larger than the utility gain agent 𝑖 would
receive from its own payoff.

f) Consider the following two scenarios involving the Ultimatum game.

Scenario 1: A proposer has a choice between offering a split of ($8, $2) or ($5,
$5). In experiments with this choice, responders tend to reject offers of ($8, $2).

Scenario 2: A proposer has a choice between offering a split of ($8, $2) or ($10,
$0). In experiments with this choice, responders tend to accept offers of ($8,
$2).

A utility function of the type that Bob has cannot result in this behaviour.
Explain why.

Answer

In both cases, the outcome is ($8, $2). This would result in the same
level of utility regardless of the other option that the proposer had. If
compared with the outcome ($0, $0) from rejecting the offer, the action
should therefore be the same.
An explanation for the difference between scenarios is that people care
not just about outcomes, but also the intentions of those with whom they
interact. In that circumstance, the good (or otherwise) intentions of the
proposer in offering either less than they could or as much as they could
would shape the responder’s action. However, intentions do not enter into
Bob’s utility function.
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